- 博客(273)
- 资源 (21)
- 收藏
- 关注
原创 GAN在图像转译领域的应用-CycleGAN&Pix2Pix
介绍GAN的一些新奇好玩的应用(CycleGAN&Pix2Pix),比如风格迁移,简笔画生成,图像上色等等,一起探究这些应用实现的背后原理是什么以及GAN是如何设计去实现的
2023-05-27 18:30:50
261
原创 Docker使用教程(概念,命令,方法)
Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。镜像中的应用程序运行后形成的进程就是容器。
2023-05-10 23:05:19
17
1
原创 生成对抗网络-Conditional GAN
判别器的功能从一个变成两个,一是判断G生成的图片符合真实样本的程度,二是判断输入图片符合给定条件y的程度。输入为两个即潜在变量和控制条件。G的输入为z和y,y为条件,通常为一个数值或者one-hot向量(表示某种类别or。GAN是无监督的,输出是完全随机的,比如在人脸上训练好的网络,最后生成什么样的人脸是完全没办法控制的。在输入的时候加入了条件信息,可以根据条件信息指定生成某。特征),z为潜在向量。
2023-04-20 23:52:23
32
原创 生成对抗网络GAN
生成对抗网络Generative Adversarial Networks(GAN)包含生成模型(generative model)和判别模型(discriminative model)两个模型。生成模型的任务是生成和原始数据相似的实例,判别模型的任务是判断给定的实例是真实的还是伪造的。
2023-04-20 23:26:12
539
原创 在OpenCV中同时加载两个视频并播放(Python实现)
最近在做一些视频方面的相关实验,在OpenCV中我们可以用现实窗口来控制图像处理前后的效果对比,同理,对于视频处理来说也可以进行相关的操作,本文可实现N个视频文件的左右拼接和上下拼接
2023-04-16 23:11:02
149
1
原创 深度学习可解释性分析-Grad-CAM
CAM揭示了卷积神经网络分类模型中图像的空间特征与其类别权重之间的联系,然鹅,CAM只适用于模型中有全局平均池化层并且只有一个全连接层(即输出层)的情形,如ResNet,MobileNet等。因为CAM算法中生成类激活图所需要的类别权重,即为全局平均池化层和全连接输出层之间的,对应着图片类别的权重。对于VggNet,DenseNet等有着多个全连接层的模型,CAM则不再适用,因为无法获取到类别权重。为了解决这一问题,Grad-CAM应运而生。
2023-03-28 20:30:24
290
原创 深度学习可解释性分析-CAM
CAM可以实现对深度学习实现可解释性分析,显著性分析可扩展性强,后续衍生出各种基于CAM的算法每张图像,每个类别都能生成对应的热力图弱监督定位:图像分类模型解决定位问题潜在的“注意力机制”Machine learning 到Machine teaching。
2023-03-28 20:22:15
276
原创 轻量级网络模型ShuffleNet V2
ShuffleNet-V2是旷视推出的继ShuffleNet-V1的轻量级网络模型,旨在不过多牺牲模型性能的同时大幅度减小模型的尺寸和加快模型的运算速度。在同等复杂度下,ShuffleNet-V2比ShuffleNet-V1和MobileNet-V2更准确。
2023-02-26 17:04:22
707
原创 轻量级网络模型ShuffleNet V1
本文介绍了ShuffleNet的相关内容,ShuffleNet是旷视推出的轻量级网络模型,旨在不过多牺牲模型性能的同时大幅度减小模型的尺寸和加快模型的运算速度。ShuffleNet利用了分组点卷积pointwise group convolution来降低参数量,利用通道重排channel shuffle操作来增强不同通道之间的交互和融合。
2023-01-19 09:38:08
1010
原创 ‘*/*/Sdk/ndk-bundle/ndk-build.cmd‘‘ finished with non-zero exit value 2解决办法
'*/*/Sdk/ndk-bundle/ndk-build.cmd'' finished with non-zero exit value 2解决办法
2023-01-03 15:59:04
258
4
原创 Android编译报错 jetified-annotations解决办法
Android编译报错 jetified-annotations解决办法
2023-01-03 11:44:18
366
原创 在Android端集成OpenCV的三种方式
本文较为详细的介绍了在Android端集成OpenCV的三种方式,并给出了相关的小例子实现,本文安卓开发编译器Android Studio。
2022-12-23 18:07:40
3352
原创 轻量级网络模型MobileNet发展脉络(V1-V2-V3)
本文介绍了轻量级网络模型MobileNet的发展脉络(V1-V2-V3),详细介绍了网络模型的结构,设计思路,并给出了实验结果。此外,本文还简单介绍了MnasNet,因为MobileNet V3模型的设计思路一部分来源于此。
2022-12-20 11:58:40
1130
4
原创 论文阅读之《Underwater scene prior inspired deep underwater image and video Enhancement (UWCNN)》
水下图像增强之《Underwater scene prior inspired deep underwater image and video Enhancement (UWCNN)》论文阅读。
2022-07-30 12:17:43
1377
原创 论文阅读之《Quasi-Unsupervised Color Constancy 》
颜色恒常性之《Quasi-Unsupervised Color Constancy 》论文阅读。
2022-07-30 11:55:36
399
原创 论文阅读之《Color Constancy Using CNNs》
颜色恒常性之《Color Constancy Using CNNs》论文阅读。
2022-07-30 11:44:55
698
原创 论文阅读之《DeepIlluminance: Contextual IlluminanceEstimation via Deep Neural Networks》
颜色恒常性之《DeepIlluminance: Contextual IlluminanceEstimation via Deep Neural Networks》论文阅读。
2022-07-30 11:29:54
433
原创 知识图谱构建流程步骤详解
知识图谱构建流程概览1.知识抽取1.1 知识抽取的主要任务(1)实体识别与抽取任务:识别出待处理文本中七类(人名、机构名、地名、时间、日期、货币和百分比)命名实体。两个子任务:实体边界识别和确定实体类型。(2)关系抽取任务:关系抽取是从文本中抽取出两个或多个实体之间的语义关系。它是信息抽取研究领域的任务之一。(3)属性抽取任务:对一个给定的实体从非结构化文本中抽取出实体的属性及其属性值形成结构化数据。1.2 实体抽取知识抽取包括三个要素:实体抽取(命名实体识别
2022-05-31 11:25:14
17249
3
原创 Git&GitHub实践-从本地库上传项目到远程库
Git和远程库连接->GitHub1.注册GitHub账号2.创建本地库git add [file name] git commit -m"...." [file name] 3.创建远程库登录GitHub 创建仓库->new repository 本地库内容push到远程库 获取远程库仓库地址 新建地址别名origin: git remove add origin https://....... 推送f到远程库master分支: git push orig.
2022-05-09 16:42:07
221
原创 LeetCode20天刷题计划之Day9-广度优先搜索 / 深度优先搜索
542. 01 矩阵给定一个由0和1组成的矩阵mat,请输出一个大小相同的矩阵,其中每一个格子是mat中对应位置元素到最近的0的距离。两个相邻元素间的距离为1。示例 1:输入:mat = [[0,0,0],[0,1,0],[0,0,0]]输出:[[0,0,0],[0,1,0],[0,0,0]]示例 2:输入:mat = [[0,0,0],[0,1,0],[1,1,1]]输出:[[0,0,0],[0,1,0],[1,2,1]]提示:m =...
2022-05-09 12:37:20
300
原创 LeetCode20天刷题计划之Day8-深度优先搜索&二叉树
617. 合并二叉树给你两棵二叉树:root1和root2。想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为null 的节点将直接作为新二叉树的节点。返回合并后的二叉树。注意:合并过程必须从两个树的根节点开始。示例 1:输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,nul...
2022-05-08 10:00:04
140
原创 LeetCode20天刷题计划之Day7-深度优先搜索
733. 图像渲染有一幅以m x n二维整数数组表示的图画image,其中image[i][j]表示该图画的像素值大小。给予三个整数sr,sc和newColor。你应该从像素image[sr][sc]开始对图像进行 上色填充。为了完成上色工作,从初始像素开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点...
2022-05-07 09:09:17
223
原创 LeetCode20天刷题计划之Day6-滑动窗口
3. 无重复字符的最长子串给定一个字符串s,请你找出其中不含有重复字符的最长子串的长度。示例1:输入: s = "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: s = "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: s = "pwwkew"输出: 3解释: 因为无重复字符的最长子串是"wke",所以其长度为 3。 ...
2022-05-06 15:41:57
347
原创 LeetCode20天刷题计划之Day5
876. 链表的中间结点给定一个头结点为head的非空单链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点。示例 1:输入:[1,2,3,4,5]输出:此列表中的结点 3 (序列化形式:[3,4,5])返回的结点值为 3 。 (测评系统对该结点序列化表述是 [3,4,5])。注意,我们返回了一个 ListNode 类型的对象 ans,这样:ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, 以及 ans.n..
2022-05-02 13:42:00
485
原创 LeetCode20天刷题计划之Day4
344. 反转字符串编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组s的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 额外空间解决。示例 1:输入:s = ["h","e","l","l","o"]输出:["o","l","l","e","h"]示例 2:输入:s = ["H","a","n","n","a","h"]输出:["h","a","n","n","a","H"]注:使用双指针,定义一个头指针l...
2022-04-23 17:22:31
148
原创 LeetCode20天刷题计划之Day3
283. 移动零给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操作。示例 :输入: nums = [0,1,0,3,12]输出: [1,3,12,0,0]输入: nums = [0]输出: [0]提示:1 <= nums.length <= 104;-231 <= nums[i] <= 231 - 1注:本题使用双指针的方法来遍历,把不等于0 的元素统一计下,.
2022-04-23 09:20:49
116
原创 LeetCode20天刷题计划之Day2
977. 有序数组的平方给你一个按非递减顺序排序的整数数组nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。示例 1:输入:nums = [-4,-1,0,3,10]输出:[0,1,9,16,100]解释:平方后,数组变为 [16,1,0,9,100]排序后,数组变为 [0,1,9,16,100]示例 2:输入:nums = [-7,-3,2,3,11]输出:[4,9,9,49,121]提示:1 <= nums.length &l...
2022-04-21 15:27:18
62
原创 LeetCode20天刷题计划之Day1
704. 二分查找给定一个n个元素有序的(升序)整型数组nums 和一个目标值target ,写一个函数搜索nums中的 target,如果目标值存在返回下标,否则返回 -1。示例 1:输入: nums = [-1,0,3,5,9,12], target = 9输出: 4解释: 9 出现在 nums 中并且下标为 4示例2:输入: nums = [-1,0,3,5,9,12], target = 2输出: -1解释: 2 不存在 nums 中因此返回 -1提...
2022-04-20 18:26:31
89
原创 建设银行科技岗位秋招经历
笔试时间:20211024一面时间:20211026无领导面试:1.自我介绍2.给出一篇材料加问题,每个人看完材料回答,然后再一起讨论给出一个同意的答案3.面试官每个人再问一个问题结束。二面时间:20211031(南京线下面试)1.自我介绍2.实习经历3.为何选择银行科技岗位4.如何看待加班体检签约:20211116...
2022-01-11 11:57:10
1147
4
原创 图像压缩技术总结
最近有空整理下之前自己做的一些东西,同时也和大家分享一下自己研究方向。关于图像压缩技术,主要分为有损压缩和无损压缩,其中无损压缩图像重建的质量相对较高,但是压缩比较小,一般只能压缩5倍以内,而有损压缩可以达到较大的压缩比,同时可以尽量保证图像的质量。为什么有损压缩可行?是由于我们所看到的图像中存在着冗余信息如时间冗余,空间冗余和视觉冗余等等,这些冗余信息的去处不会影响图像信息的表达,而且可以达到压缩图像的目的。因此有损压缩目前研究的学者也是相对较多。下面是我对图像压缩技术做的一个总结,我之前针对图像压缩领域
2022-01-11 10:54:22
1876
原创 水下图像增强技术研究进展
本人硕士阶段研究偏于图像处理,计算机视觉,然后着重研究领域是关于水下图像增强,在此记录一些自己的学习过程和总结。1.图像增强技术总览这是我总结的关于低光照增强和水下图像增强的两个领域的研究进展和主要方法,另外图像增强还包括图像去雨,图像去雾,图像去模糊,超分辨等各种技术。下面针对水下图像增强,我做了一些实验,结果如下图所示:可以看到图像效果有明显提升,在主观和客观评价上也有这不错的结果,由于论文还没online,就先不放代码,当然也存在一些缺点,所有期待大家一起...
2021-10-24 20:12:27
5547
9
原创 中国工商银行科技岗面试
时间:2021年10月22号 12:30第一轮:无领导面试1.五分钟看一段材料2.两分钟个人陈述3.八分钟自由讨论4.两分钟总结发言第二轮:1.自我介绍2.你在滴滴实习的主要工作是什么,看你的情况应该是做数据分析,算法多一些,为什么报科技岗运维?Over!!!...
2021-10-22 21:24:13
2573
原创 中国银行江苏省分行科技岗秋招经历
时间:2021年10月21号18:00-19:00方式:录制视频1.一分钟自我介绍2.你是一个有条理的人吗,举个例子说明3.你是如何听取和处理不同的意见
2021-10-21 18:11:17
390
原创 交通银行科技岗秋招经历
时间:2021年10月21号15:001.一分钟自我介绍2.对银行科技岗位的理解,自己的竞争力与不足3.秋招主要找的什么行业,岗位,是否参加国考,是否有offer4.是否愿意从事与IT不相关的岗位如客户经理,业务人员等...
2021-10-21 16:07:42
552
原创 滴滴算法工程师面试
1.1x1的卷积核有什么作用?2.两个3x3的卷积核核一个5x5的卷积核的感受野相同吗?3.BN的特点,作用,和激活函数的顺序?4.BN后的激活函数可以是不同的吗,有什么影响?5.池化的方式有哪些,提取图像特征有什么不同?6.dropout是什么,和bagging有什么区别?7.L1正则化和L2正则化分别是什么,特点是什么?8.线性回归中,若给定两个相同的输入特征,并且用相同的优化方法和正则化可以剔除掉重复的特征吗?9.在NER任务中CRF层的作用是什么?10.如何解决超
2021-09-10 13:23:59
147
test.stl 三维格式的口腔数据,用来可视化。
2021-03-21
基于遗传算法和模拟退火算法改进的混合模拟退火算法
2020-04-11
基于遗传算法和模拟退火算法改进的混合模拟退火算法博客中少的代码
2020-02-27
python+anaconda+pycharm常用命令.docx
2019-11-05
pcl1.8.0+vs2013环境配置.docx
2019-08-20
Python学习笔记.txt
2019-05-14
stl数据转换成pcd点云数据,网上找不到的稀少资源(自己编写)
2019-03-13
Asp.net做的新闻后台管理系统
2018-07-17
用Android Stduio写的一个图书管理系统,数据库用的SqlLite
2018-07-17
调用Matlab摄像头函数,截取视频的每一帧并保存,自己已经验证过,非常好用。
2017-05-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人