1、寻找和为定值的两个数
题目:输入一个数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的数字。
解析:(1)可以用穷举法,从数组中任取两个数,看其和是否是该数字。但是O(N)=O(n^2)
(2)可以同时从数组首元素a[i] 和尾元素a[j] 之和遍历,如果>sum,j--; 如果<sum,i++。
#include "stdafx.h"
#include <iostream>
using namespace std;
void getElement(int a[] , int sum ,int length)
{
int i = 0, j = length-1;
while(i<j && (a[i]+a[j])!=sum)
{
if(a[i]+a[j]>sum)
j--;
else
i++;
}
if(i<j)
{
cout<<"数组中存在这样两个数"<<a[i]<<","<<a[j]<<endl;
}
else
cout<<"数组中不存在这样两个数"<<endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
int a[7] = {1,2,4,7,8,9,11};
getElement(a,19,7);
return 0;
}
(3)可以另开辟一个数组,用来存储sum - a[i]之后的值。
如:a[0--n] = {1,2,4,7,11,15} sum = 15
b[0--n] = {14,13,8,4,0}, 然后从左向右扫描a数组,从右向左扫描b数组,如果a[i]>b[j],j++,反之,i++.
这里,时间复杂度为O(N),空间复杂度为O(N)
list<int> nums;
void getElement1(int a[], int sum, int length)
{
int b[] = new int[length];
for(int i = 0;i<length;i++)
{
b[i] = sum - a[i];
}
int i = 0, j =length-1;
int t = 0;
while(length--)
{
if(a[i]>b[j])
j++;
else if(a[i]<b[j])
i++;
else
nums.push_back(a[i]);
}
}
上面求得满足条件的两个数,那么如果求满足条件的多个数呢?
2、寻求和为定值的多个数
2010年中兴面试题
编程求解:
输入两个整数 n 和 m,从数列1,2,3.......n 中 随意取几个数,
使其和等于 m ,要求将其中所有的可能组合列出来。
解析:可以看出这是关于0-1背包问题,可以将问题定义为f(n,m),从1->n中选择多个数,使得之和为m
那么(1)选取n,则剩下从n-1个数中选择和为m-n的数,即求f(n-1,m-n)
( 2)不选取n,则从剩下的n-1个数中选择和为m的数,即求f(n-1, m)
代码如下:
// 寻求和为定值的多个数.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <list>
#include <iostream>
using namespace std;
list<int> nums;
void func(int n, int m)
{
if(n<=0 || m<=0)
return;
if(n == m)
{
for(list<int>::iterator iter = nums.begin();iter!=nums.end();iter++)
cout<<*iter<<"+";
cout<<n<<endl;
}
nums.push_front(n);
func(n-1, m-n);
nums.pop_front();
func(n-1,m);
}
int _tmain(int argc, _TCHAR* argv[])
{
int a[] = {1,2,3,4,5,6,7,8,9,10};
func(10,12);
return 0;
}
扩展:
1、从一列数中筛除尽可能少的数,使得从左往右看,数列依次为由小到大再由大到小的顺序。
解析:这是一个双端最长递增子序列的问题。首先我们可以看看如何求数组的最长递增子序列,这在http://blog.csdn.net/cyongxue/article/details/14118535中有讲到,定义数组
dp[i],用来存储以a[i]结尾的字符串的最长递增子序列的长度。
那么,对于双端最长递增子序列的问题,我们可以定义数组ltor[i],用来存储从左至右,以a[i]结尾的字符串的最长递增子序列的长度;用数组rtol[i],存储从右至左,以a[i]结束的字符串的最长递增子序列的长度。那么对于这样一个凸形数组,一定存在一点 i ,使得ltor[i] + rtol[i]最大,这时,所筛除的字符数最少,为n - max(ltor[i]+rtol[i])
int Max(int a, int b)
{
return a>b?a:b;
}
int main()
{
int a[8] = {1,4,3,5,6,7,2,0};
int ltor[8] = {1}, rtol[8]= {1};
//ltor[8]
int max1 = ltor[0];
for(int i = 1;i<8;i++)
{
for(int j = 0;j<i;j++)
{
if(a[j]<a[i])
ltor[i] = Max(ltor[i],ltor[j]+1);
}
max1 = Max(max1,ltor[i]);
}
int max2 = rtol[0];
for(int i = 6;i>=0;i--)
{
for(int j = 7;j>i;j--)
{
if(a[j]<a[i])
rtol[i] = Max(rtol[i],rtol[j]+1);
}
max2 = Max(max2,rtol[i]);
}
int max_LS = 0;
int t = 0;
for(int i = 0;i<8;i++)
{
if(max_LS<rtol[i]+ltor[i])
{
max_LS = rtol[i]+ltor[i];
t = i;
}
}
cout<<"当i为"<<t<<"时,最少删除"<<8-max_LS;
}
该博客的参考源:http://blog.csdn.net/v_JULY_v/article/details/6419466