程序员编程艺术---5、寻找满足和为定值的两个或多个数

1、寻找和为定值的两个数

题目:输入一个数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的数字。

解析:(1)可以用穷举法,从数组中任取两个数,看其和是否是该数字。但是O(N)=O(n^2)

(2)可以同时从数组首元素a[i] 和尾元素a[j] 之和遍历,如果>sum,j--; 如果<sum,i++。

#include "stdafx.h"
#include <iostream>

using namespace std;

void getElement(int a[] , int sum ,int length)
{
	int i = 0, j = length-1;
	while(i<j && (a[i]+a[j])!=sum)
	{
		if(a[i]+a[j]>sum)
			j--;
		else
			i++;
	}
	if(i<j)
	{
		cout<<"数组中存在这样两个数"<<a[i]<<","<<a[j]<<endl;
	}
	else
		cout<<"数组中不存在这样两个数"<<endl;
}

int _tmain(int argc, _TCHAR* argv[])
{
	int a[7] = {1,2,4,7,8,9,11};
	getElement(a,19,7);
	return 0;
}


(3)可以另开辟一个数组,用来存储sum - a[i]之后的值。

  如:a[0--n] = {1,2,4,7,11,15}  sum = 15

         b[0--n] = {14,13,8,4,0}, 然后从左向右扫描a数组,从右向左扫描b数组,如果a[i]>b[j],j++,反之,i++.

这里,时间复杂度为O(N),空间复杂度为O(N)

list<int> nums;
void getElement1(int a[], int sum, int length)
{
	int b[] = new int[length];
	for(int i = 0;i<length;i++)
	{
		b[i] = sum - a[i];
	}
	int i = 0, j =length-1;
	int t = 0;
	while(length--)
	{
		if(a[i]>b[j])
			j++;
		else if(a[i]<b[j])
			i++;
		else
			nums.push_back(a[i]);
	}

}


上面求得满足条件的两个数,那么如果求满足条件的多个数呢?

2、寻求和为定值的多个数

2010年中兴面试题
编程求解:
输入两个整数 n 和 m,从数列1,2,3.......n 中 随意取几个数,
使其和等于 m ,要求将其中所有的可能组合列出来。

解析:可以看出这是关于0-1背包问题,可以将问题定义为f(n,m),从1->n中选择多个数,使得之和为m

           那么(1)选取n,则剩下从n-1个数中选择和为m-n的数,即求f(n-1,m-n)

                   ( 2)不选取n,则从剩下的n-1个数中选择和为m的数,即求f(n-1, m)


代码如下:

// 寻求和为定值的多个数.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <list>
#include <iostream>

using namespace std;

list<int> nums;
void func(int n, int m)
{
	if(n<=0 || m<=0)
		return;
	if(n == m)
	{
		for(list<int>::iterator iter = nums.begin();iter!=nums.end();iter++)
			cout<<*iter<<"+";
		cout<<n<<endl;
	}
	nums.push_front(n);
	func(n-1, m-n);
	nums.pop_front();
	func(n-1,m);

}

int _tmain(int argc, _TCHAR* argv[])
{
	int a[] = {1,2,3,4,5,6,7,8,9,10};
	func(10,12);
	return 0;
}


扩展:

1、从一列数中筛除尽可能少的数,使得从左往右看,数列依次为由小到大再由大到小的顺序。

解析:这是一个双端最长递增子序列的问题。首先我们可以看看如何求数组的最长递增子序列,这在http://blog.csdn.net/cyongxue/article/details/14118535中有讲到,定义数组

dp[i],用来存储以a[i]结尾的字符串的最长递增子序列的长度。

     那么,对于双端最长递增子序列的问题,我们可以定义数组ltor[i],用来存储从左至右,以a[i]结尾的字符串的最长递增子序列的长度;用数组rtol[i],存储从右至左,以a[i]结束的字符串的最长递增子序列的长度。那么对于这样一个凸形数组,一定存在一点 i ,使得ltor[i] + rtol[i]最大,这时,所筛除的字符数最少,为n - max(ltor[i]+rtol[i])

int Max(int a, int b)
{
	return a>b?a:b;
}

int main()
{
	int a[8] = {1,4,3,5,6,7,2,0};
	int ltor[8] = {1}, rtol[8]= {1};

	//ltor[8]
	int max1 = ltor[0];
	for(int i = 1;i<8;i++)
	{
		for(int j = 0;j<i;j++)
		{
			if(a[j]<a[i])
				ltor[i] = Max(ltor[i],ltor[j]+1);
		}
		max1 = Max(max1,ltor[i]);
	}

	int max2 = rtol[0];
	for(int i = 6;i>=0;i--)
	{
		for(int j = 7;j>i;j--)
		{
			if(a[j]<a[i])
				rtol[i] = Max(rtol[i],rtol[j]+1);
		}
		max2 = Max(max2,rtol[i]);
	}

	int max_LS = 0;
	int t = 0;
	for(int i = 0;i<8;i++)
	{
		if(max_LS<rtol[i]+ltor[i])
		{
			max_LS = rtol[i]+ltor[i];
			t = i;
		}

	}
	cout<<"当i为"<<t<<"时,最少删除"<<8-max_LS;

}

该博客的参考源:http://blog.csdn.net/v_JULY_v/article/details/6419466






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值