HDU 3282 Running Median(非正统解法——二叉搜索树)

【题意】第一行两个数,分别是集合的编号和集合的元素个数。第二行,n个数,表示一个集合,让你按顺序读入这些数,每读入奇数个,便询问已读入的这奇数个数的中位数是几。
【分析】首先说,这个题的数据比较水,不然按我的方法肯定过不了。据学长说是线段树,但是依然有同学凭借强悍的n^2 * log(n) 的暴力水过,那看起来我还是可以过的,于是就用二叉树尝试了一下。
二叉排序树,就是一种特殊的二叉树,左子树上所有的值都比根节点小,右子树上的节点都比根节点小。
我采用动态建树,每读入一个就把这个节点加入二叉树。每个节点维护四个值,当前节点的值,左孩子的位置,右孩子的位置,以这个节点为根节点的子树的节点总数:维护这值的意义就在于方便查询。
查询:因为我们维护了节点个数,所以找到一个根节点我们都可以找到它左子树的节点总个数,那么我们就知道有多少个数是小于它的。查询的时候从根节点开始查询,当然每次都是查询第 k = i / 2 + 1 个,如果k 的值比左子树节点个数小那么久查询左子树,否则就查询右子树。
代码:

#include<cstdio>
#include<cstring>
using namespace std;

//int a[100001];
struct node{
    int value, num;
    int lson, rson;
}a[100001];

void dfs(int root, int k){
    if(a[k].value <= a[root].value) {
        if(a[root].lson == 0) a[root].lson = k;
        else dfs(a[root].lson, k);
    } else {
        if(a[root].rson == 0) a[root].rson = k;
        else dfs(a[root].rson, k);
    }
    a[root].num = a[a[root].lson].num + a[a[root].rson].num + 1;
} 

int find(int root, int k){
    if(k == a[a[root].lson].num + 1) return a[root].value;
    else if(a[a[root].lson].num >= k) return find(a[root].lson, k);
    else return find(a[root].rson, k - a[a[root].lson].num - 1);
}

int main(){
//  freopen("a.txt", "w", stdout);
    int T, n, m;
    scanf("%d", &T);
    while(T--){
        int cnt = 0;
        memset(a, 0, sizeof(a));
        scanf("%d%d", &m, &n);
        printf("%d %d\n", m, n / 2 + 1);
        for(int i = 1; i <= n; i++){
            scanf("%d", &a[i].value);
            a[i].num = 1;
            if(i > 1) dfs(1, i);
            if(i % 2){
                cnt++;
                printf("%d", find(1, i / 2 + 1));
                if(cnt == 10 || i == n) {
                    printf("\n");
                    cnt = 0;
                }
                else printf(" ");
            }       
        }
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值