小曹同学努力了吗
码龄4年
关注
提问 私信
  • 博客:146,807
    动态:753
    147,560
    总访问量
  • 12
    原创
  • 677,994
    排名
  • 87
    粉丝
  • 0
    铁粉

个人简介:西工大2024级硕士毕业生,电子信息专业,目前就职于西安一家ic国企,从事数字ic方向,欢迎交流!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2021-04-08
博客简介:

cyy0789的博客

查看详细资料
个人成就
  • 获得195次点赞
  • 内容获得102次评论
  • 获得752次收藏
  • 代码片获得69,181次分享
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 10篇
    2021年
成就勋章
TA的专栏
  • 脉冲神经网络
    4篇
  • 深度学习
    5篇
  • 机器学习
    5篇
  • python
    7篇
  • sklearn
    2篇
兴趣领域 设置
  • 人工智能
    神经网络
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

344人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

GPU版本pytorch(Cuda12.1)清华源快速安装一步一步教!小白教学~

对于cuda版本为目前最新的12.1的同学,讲解如何一步一步快速安装对应的GPU版本pytorch
原创
发布博客 2023.06.10 ·
107354 阅读 ·
146 点赞 ·
82 评论 ·
478 收藏

class Baby(): def _init_(self, name, birthday, weight, height): self.name = name self.birthday = birthday self.weight = weight self.height = height mybaby = Baby('孙沪宁', '2022.10.24', 3.08, 48)

发布动态 2022.11.03

snntorch_P3: 脉冲神经网络与其他经典算法的对比

本篇作为脉冲神经网络的相关续篇,引入了遗传算法优化的BP神经网络和SVM作为结果对比,可以参考前两篇脉冲神经网络相关介绍。后面会陆续发出RBF、CNN和SNN的结果~,并进行能耗对比说明,欢迎关注!
原创
发布博客 2022.10.21 ·
1572 阅读 ·
6 点赞 ·
3 评论 ·
8 收藏

两年前我考研,数学143,总分427,中午给女朋友讲题,以为已经淡忘了,但是一写起来还是思如泉涌,希望她也可以顺顺利利上研,加油

发布动态 2022.08.03

snntorch:P2—【LIF神经元模型】手撕公式、代码实现与演示

LIF神经元模型是现阶段脉冲神经网络的搭建与训练过程中使用最多的神经元模型,既保留了HH模型中关于生物神经元的核心思想,具有一定的仿生型,也兼顾了普通人工神经元计算效率高的特点,所以本文就LIF神经元展开说明,包括了生物启发的模型建立、公式推导、离散化递归表示以用于代码实现,最后有snntorch框架中关于LIF神经元的相关代码。...
原创
发布博客 2021.11.20 ·
7878 阅读 ·
18 点赞 ·
13 评论 ·
95 收藏

snntorch : 一种将torch引入到snn中的脉冲神经网络训练框架(P1 如何将数据转化为脉冲序列)

这篇文章下面的代码主要实现以下三个功能:将数据集转化为脉冲序列的数据集如何可视化它们如何生成随机脉冲序列数据集采用深度学习中常用的MNIST数据集采用脉冲序列作为输入的三大好处:3-SSpikes 脉冲神经网络的输入是一系列由0和1组成的脉冲序列,也是人脑中沿着轴突传递的神经冲动的数字化表示。Sparsity sparsity是稀疏性的意思,是指我们上一点提到的的脉冲序列通常是稀疏矩阵的形式,也就是说这些矩阵大部分元素都为0,只有少数有意义的部分为1。这两点特性使得脉冲神经网络的硬件
原创
发布博客 2021.11.16 ·
5569 阅读 ·
13 点赞 ·
0 评论 ·
38 收藏

【Kmeans】k均值聚类案例演示

Kmeans聚类方法原理:1.首先随机定出K个聚类中心;2.计算数据中每一个点到K个聚类中心的距离(欧氏距离),哪个最小就把这个点归到哪一个簇中;3.计算每一个簇中所有点的中心点(向量对应元素取平均),这些点确定为新的聚类中心;4.重复步骤2、3,直到所有的聚类中心不再发生变化。知道这个原理后,我们应用此来做一个简单的小例子。需要安装的第三方库:numpy、matplotlib、scipy、sklearn(注意顺序不要错哦,后三个库是以numpy为基础,sklearn右是以前三个为基础的)安
原创
发布博客 2021.10.10 ·
3251 阅读 ·
4 点赞 ·
0 评论 ·
60 收藏

sklearn中三种常见的数据集的演示(波士顿房价数据集、鸢尾花数据集、手写数字数据集)

1.波士顿房价数据集from sklearn.datasets import load_bostonboston = load_boston()print(boston.data.shape)from sklearn.datasets import load_bostondata, target = load_boston(return_X_y=True)print(data.shape)print(target.shape)#target就是价格 data即属性2.鸢尾花数据集
原创
发布博客 2021.10.09 ·
2378 阅读 ·
0 点赞 ·
0 评论 ·
20 收藏

西工大航天学院电子信息类复试936八年真题及答案.pdf

发布资源 2021.10.08 ·
pdf

李宏毅老师2021深度学习课程笔记.pdf

发布资源 2021.10.08 ·
pdf

李宏毅老师2021深度学习课程笔记

神经网络的连接方式是由自己来设定的,常见的有如下几种:1.全连接前向传递神经网络误差反向传播是一种有效计算偏微分的方法,提供这种方法的有如下若干的工具箱。我们简化神经网络结构如下,来说明反向传播原理,z对w1 w2求偏导的结果分别是x1和x2。上图中,不难理解,一个权重直接连接的输出对该权重的微分就是所直接连接的输入的值。像这样,每一次微分的值都是按照从输入到输出的前向顺序计算出每一层的输入值,以此来确定输出对权重的导数,这样的过程就叫做前向传播。...
原创
发布博客 2021.09.29 ·
678 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

【强推】李宏毅老师2021深度学习课程学习笔记(持续更新中)

机器学习可以理解为是让机器自动寻找函数的一个过程。根据函数功能的不同,可以将机器学习进行以下分类。Alpha Go做的事情也是一个分类问题:将当前棋盘上白子黑子的位置作为输入,输出是19*19个calsses中的一个。如果知道了李宏毅老师Youtube过去三年每一天的播放量数据,去预测明天的播放量数据,可以假定一个包含了两个参数w和b的线性模型,输入x1为前一天的数据(如2.25),y为预测的当前一天的数据(如2.26)损失函数是一个关于模型参数的函数,用来评价模型及模型参数选择的优劣,此处
原创
发布博客 2021.09.23 ·
1992 阅读 ·
3 点赞 ·
0 评论 ·
17 收藏

一个有趣的小例子:如何判断一个数字是回文数

今天室友在学习C语言的过程中,看到他在学习一个小例子,判断一个数字是不是回文数,比如11,121,1221都是回文数,他们在倒过来之后都是与自身相等的,我们基于python进行编程。
原创
发布博客 2021.09.23 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

嵩天老师python课程【霍兰德人格分析图绘制】源代码报错的一种修改方法

# HollandRadarDraw.py 展示人格兴趣与职业之间一种内在的对应的关系import numpy as npimport matplotlib.pyplot as pltimport matplotlibmatplotlib.rcParams['font.family'] = 'SimHei'#matplotlib.rcParams[‘font.family’]为设置字体radar_labels = np.array(['研究型(I)', '艺术型(A)', '社会型(S)', \
原创
发布博客 2021.09.17 ·
1081 阅读 ·
3 点赞 ·
2 评论 ·
3 收藏

python中数据拼接常用的三种方法

1.先将数组转换为列表,后用列表的拼接函数append()、extend()进行拼接,最后将列表转换为数组。import numpy as npx=np.array([0,1,2])y=np.array([5,6,7])print(x,y)listx=list(x)listy=list(y)listx.extend(listy)print(listx)x=np.array(listx)print(x)2.numpy库中有numpy.append(arr, values, axis=
原创
发布博客 2021.09.17 ·
13092 阅读 ·
0 点赞 ·
0 评论 ·
18 收藏

Brian2_脉冲神经网络_神经元学习记录

脉冲神经网络被称作是第三代神经网络,生物可信度更高,在近年来兴起的类脑科学研究中,SNN也一直占据着核心地位。并且在性能相近的情况下,基于脉冲神经网络制成的芯片相较于人工神经网络功耗更低,稳定性、鲁棒性等也更为优异。通过pip方式安装了Brian2,并运行了一些官网上提供的程序,也附了一些自己的学习心得。from brian2 import *start_scope()#start_scope()函数确保在调用该函数之前创建的任何 #Brian对象都不会包含在下一次模拟运行中。tau = 10*
原创
发布博客 2021.09.16 ·
1350 阅读 ·
3 点赞 ·
1 评论 ·
12 收藏
加载更多