补充代码
文章:
代码随想录训练营Day 02 | 数组Part 01 双指针法拓展题-CSDN博客
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int head = 0;
int tail = nums.size() - 1;
int k = nums.size() - 1;
vector<int> result(nums.size(),0);
while(head <= tail) {
if(nums[head]*nums[head] >= nums[tail]*nums[tail]) {
result[k] = nums[head]*nums[head];
k--;
head++;
}
else {
result[k] = nums[tail]*nums[tail];
k--;
tail--;
}
}
return result;
}
};
209.长度最小的子数组
思路分析:
采用一个for循环来实现两个for循环能做的事。而这一题的双指针法,又和之前两题的双指针法有所不同,这里的一个指针,指的是终止位置,而是不断地移动起始位置,这样才能通过一个for循环来实现,而如何移动起始位置便是这里的精华所在,也是重难点所在。
这一题我在思考的时候被卡住了,但回过头去看题目就会发现题目已经告诉我们测试数据均为正整数,所以不存在负数,也就不用考虑数值反向变大的可能,这个也是因为我受到了其中一题最小序列和的影响,这个题目在后续应该也会出现,到时候再把两题拿出来对比对比。
代码:
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int sum = 0, t = 0, l = 0; //t为起始位置
int result = nums.size()*2;
for(int i = 0; i < nums.size(); i++) {
sum = sum + nums[i];
while (sum >= target) {
l = i - t + 1;
result = min(result,l);
sum = sum - nums[t];
t++;
}
}
if (result == nums.size()*2) return 0;
else return result;
}
};
59.螺旋矩阵II
前提:
这里用到了第一天的区间统一原则。
代码随想录训练营Day01 | 数组Part01-CSDN博客
思路分析:
其实这一题,我觉得还是需要多看几遍视频,我看完两遍以后,才稍稍有一点感觉,主要还是会把自己给绕进去。
关于旋转,到底需要绕几圈,为何是n/2圈,请看图。
看了这个图,相信对于为什么转的是n/2圈应该就非常清晰了。在最后的时候需要额外加一个判断,如果为奇数的话,单独进行处理即可。
这一题的第一个难点已经弄明白了以后,后面就要继续来弄清楚边界的处理,也就是循环不变量的处理,和前面所提的一样,左闭右闭与左闭右开,左开右闭的情况还是比较少见的。
首先这一题的代码,整体来说是怎么样的一个思路?
首先,我们应该做的是依次遍历某一条边,而一圈为4条边,其实也就是正方形,那我们具体一些边是用什么变量,还是用手写图来理解,光靠文字还是比较难弄懂的。
看到图,脑海里应该就能浮现出如下几个问题,并做一下自答:
①当前是第几圈?
②需要读入几个数据?
那么,应该定义一个变量,用于存储当前进行到的圈数,以便进行后续的循环读入,也就是说,每一圈,都要进行4个循环,换言之,一个for里面套着4个for,注意不是逐层嵌套,后面的4个for循环是并列存的,否则时间肯定是不符合要求的了。
这个时候,又浮现出一个问题,当前进行到的是第几行?第几列?这个就需要好好思考一下了,要怎么去改变,且不会影响到下一圈数据的存储,不能仅仅只是顾好了当前的这一圈,而没有考虑下一圈。
这里要考虑当前进行到的是第几行第几列还是有点难度的,需要思考一会。我个人认为,可以在进行完两边以后对一个新的变量进行自增,可以作为一个标记,从这个开始后面的循环是采用递减,经过每两条边就进行一个更换,至于递减到哪个界限,也是看这个特殊变量。
代码:
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
int sx = 0, sy = 0;
int i, j;
int count = 1;
vector<vector<int>> res(n, vector<int>(n, 0));
for(int t = 1; t <= n/2; t++) {
i = sx;
j = sy;
for(; j < n - t; j++) {
res[i][j] = count;
count++;
}
for(; i < n - t; i++) {
res[i][j] = count;
count++;
}
for(; j > sy; j--) {
res[i][j] = count;
count++;
}
for(; i > sx; i--) {
res[i][j] = count;
count++;
}
sx++;
sy++;
}
if(n%2 == 1) {
res[n/2][n/2] = count;
}
return res;
}
};
总的来说,这里的边界变换还是需要多思考一下,绕了好半天才绕明白