数据结构:AVL树的平衡调整——LL,LR,RL,RR

AVL树的全称是平衡搜索二叉树,本质上也是一个二叉搜索树(BST),满足BST树的所有性质。

但是我们在使用二叉搜索树的时候,我们知道通常情况在BST中搜索一个节点的时间复杂度是O(lgn)。

最坏的情况为O(n),这种情况就是出现连续的左子树/右子树,如下图所示:

这种情况其实就已经是链式存储,无法将树的优势体现出来。

为了避免这种情况,我们就要保证这个树随时都是平衡的。当然要求不能那么严格,不需要保证它完全平衡(每个节点的左右子树高度差的绝对值都为0),AVL树就要求的是只要每个节点的左右子树高度差的绝对值不超过1,就可以称作平衡。

我们将“每个节点的左右子树的高度差的绝对值”叫做平衡因子(BF)。

在AVL树中,插入一个节点之后都会判断是否打破了这个平衡。如果打破了,就需要对树进行调整,让它仍然满足平衡的定义,并且不改变中序遍历的正确性。这步操作就叫做旋转。即,是否需要旋转以及具体的旋转实现都要包含在插入函数里。

 

根据插入的位置不同,旋转的类型也分为4种:LL,LR,RL,RR。

旋转的几种情况:
1.插入点位于x的左孩子的左子树中。	左左LL  右旋。
2.插入点位于x的左孩子的右子树中。	左右LR	较低的先左旋,转换为LL问题,再右旋。
3.插入点位于x的右孩子的左子树中。	右左RL	较低的先右旋,转化为RR问题。再左旋。
4.插入点威武x的右孩子的右子树中。	右右RR	左旋。

接下来我们就用几个简单的例子,来分析旋转操作。

先给出AVL树的定义。

typedef struct AVLTree
{
    int height;                //当前节点的高度。
    int data;
    struct AVLTree* lchild;
    struct AVLTree* rchild;
}Tree,*pTree
  1. LL & RR

如图所示。

原本的状态是左边图所示,中序遍历为2,3.此时平衡因子分别为1,0.

在插入了一个节点之后(此时我们还没有写带调整的插入函数,可以理解为使用BST树的插入函数),我们可以看到这就成了我们最不想看见的情况——变成了链式存储。此时,我们就需要进行调整了。

情况:导致失衡的节点(1)是节点node(3)的左子树的左孩子,即为LL情况。

具体算法如下:

1.对于节点node(值为3的节点),先取它的左孩子(值为2的节点)作为临时节点temp;

2.将temp的右孩子作为node的左孩子;

3.再将node作为temp的右孩子;

4.更新height

5.node = temp。此时,temp就成为了原来node一样的存在。

下图是调整后的二叉树:

可以看到,此时还是一个BST树且中序遍历的顺序也没有发生改变,还满足了AVL的要求。

具体代码实现:

前置函数:

int GetHeight(pTree tree)            //获取当前节点的高度。
{
    if(tree == nullptr) return 0;
    return tree->height;
}

bool IsBalanced(pTree tree)            //判断是否平衡。
{
    int BF = GetHeight(tree->lchild) - GetHeight(tree->rchild);
    return abs(BF) < 2;
}

LL型旋转函数:

pTree Rotate_LL(pTree tree)
{
    pTree temp = tree->lchild;
    tree->lchild = temp->rchild;
    temp->rchild = tree;

    //更新高度,先更新node再更新temp。
    tree->height = max(GetHeight(tree->lchild),GetHeight(tree->rchild))+1;
    temp->height = max(GetHeight(temp->lchild),GetHeight(temp->rchild))+1;

    return temp;
}

RR型由于和LL型是对称的,所以只需要将LL中的所有左右互换就可以了。

pTree Rotate_RR(pTree tree)
{
    pTree temp = tree->rchild;
    tree->rchild = temp->lchild;
    temp->lchild = tree;

    //更新高度,先更新node再更新temp。
    tree->height = max(GetHeight(tree->lchild),GetHeight(tree->rchild))+1;
    temp->height = max(GetHeight(temp->lchild),GetHeight(temp->rchild))+1;

    return temp;
}
  • LR & RL 

接下来分析LR型:

即,引起失衡的是node节点的左子树的右孩子。 即如下图的情况:

在节点值为4的节点插入5,是4的右孩子。此时已经失衡。即为LR问题。

LR具体算法:

1.先获取node(值为10的节点)的左孩子节点,记为temp。

2.对temp进行RR。

3.对node进行LL。

代码实现:

pTree Rotate_LR(pTree tree)
{
    pTree temp = tree->lchild;
    tree->lchild = Rotate_RR(temp);
    return Rotate_LL(tree);
}

由于RL和LR是对称的,同样只需将所有的R换成L即可。此处不再赘述。

  • 8
    点赞
  • 12
    收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论 2

打赏作者

绘夜

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值