倾向值分析:统计方法与应用(美)郭申阳-阅读笔记

本文介绍了PSM(Propensity Score Matching)的步骤,包括使用Logit回归或机器学习(如GBM、GDBT)估计倾向得分,根据匹配值选择匹配方法(如最近邻、最佳匹配),并验证匹配后偏差。关键概念涉及倾向得分调整、匹配方法选择与偏差检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PSM方法步骤

  1. 选取适当方法得出各样本匹配值。
    (自变量为二分时可用logit回归);或者GBM方法(机器学习);现在可能更好的方法是GDBT???
    (在匹配之前,也可以直接用倾向值得分进行加权回归,以判断样本通过倾向值加权后的平衡情况(是对协变量、自变量的回归。具体见5.9.5 p150),如果是平衡的,可以直接用倾向值加权进行回归;但是前面检验结果可能表明仍然是有偏的,则不适合后续回归)

  2. 根据匹配值,结合样本的共同支撑情况等分布,选择合适的匹配方法。
    如最近邻匹配、最佳匹配、可变匹配、完全匹配等方法

    匹配后,对样本匹配后所减少的偏差进行检验,即dx(具体介绍部分在5.5.3,p121)

在这里插入图片描述
在这里插入图片描述
p146

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值