PSM方法步骤
-
选取适当方法得出各样本匹配值。
(自变量为二分时可用logit回归);或者GBM方法(机器学习);现在可能更好的方法是GDBT???
(在匹配之前,也可以直接用倾向值得分进行加权回归,以判断样本通过倾向值加权后的平衡情况(是对协变量、自变量的回归。具体见5.9.5 p150),如果是平衡的,可以直接用倾向值加权进行回归;但是前面检验结果可能表明仍然是有偏的,则不适合后续回归) -
根据匹配值,结合样本的共同支撑情况等分布,选择合适的匹配方法。
如最近邻匹配、最佳匹配、可变匹配、完全匹配等方法匹配后,对样本匹配后所减少的偏差进行检验,即dx(具体介绍部分在5.5.3,p121)
p146