观赏鱼辨识系统说明-Day 01

该博客介绍了作者计划在35天内构建一个观赏鱼辨识系统的全过程,包括前端手机/网页应用、后端Nginx+Django服务器、YOLO图像辨识模型以及MariaDB数据库的整合。系统通过RESTful Web API进行通信,用户上传照片后,经过YOLO模型识别,返回观赏鱼的详细信息。未来可能将服务迁移到AWS的其他服务,实现无服务器架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

观赏鱼辨识系统说明-Day 01

在接下来的35天会制作一个完整的系统包含前端-手机/网页,后端-Nginx + Django,以及辨识模型YOLO的建立,详细构架如下图。

在这里插入图片描述

图1、观赏鱼辨识系统架构图

用户使用手机拍摄观赏鱼的照片,透过RESTful Web API上传到亚马逊AWS的EC2虚拟主机上,在主机上我们安装了Nginx网页服务器来接收网页需求,它会把RESTful Web API的请求转送到Python的Django网页框架,把图片传给YOLO的图像辨识模型进行辨识,得到预测结果后,把文字结果传给MariaDB数据库去获取更多的观赏鱼相关数据,如鱼的中文名称,生活习性等;把图片结果储存到文件中。并把这些信息转成JSON格式当成是RESTful Web API的回复,回传给用户,并呈现在手机上。画面会如下图所示。

观赏鱼辨识系统操作画面图2、观赏鱼辨识系统操作画面

需要实作的观赏鱼辨识系统服务如下,共有五个功能需要完成,分别为使用者的操作界面、RESTful API、数据库、网站服务器以及图像辨识服务等。下表分别列出所需要的软硬体元件,主要的实作都是在AWS云上完成,如果时间允许,会考虑相关服务都转换成AWS的其他对应服务,如RESTful API与网站服务器使用Amazon API Gateway搭配Lambda与S3来完成,数据库用DynamoDB来完成,不用RDS的原因,是因为RDS需要租用整个实例而非使用空间,而图像辨识就以亚马逊的Sagemaker来取代,这样就可以完成无服务器的实作,只是需要时间来尝试,不确定是否可以完成。不过,光是目前的工作量就可以安排30天了。

表1、系统需要实作的服务列表

服务软件硬件功能说明
操作界面js手机/个人电脑拍摄照片
压缩/调整照片大小
调用RESTful API上传照片
解析来自web服务器的响应
显示结果
RESTful APIDjango/PythonAWS EC2递交 RESTful API
与数据库交互
与YOLO模型交互
数据库MariaDBAWS EC2观赏鱼信息的处理
网站服务器NginxAWS EC2提供经过处理的图像
图像辨识YOLO modelAWS EC2训练数据集
测试/识别照片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值