大模型项目实战【建议收藏】,大模型项目实战教程,存下吧很难找全的!

一、大模型开发整理流程
1.1、什么是大模型开发

我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。

开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用 API 或开源模型来实现核心的理解与生成,通过 Prompt Enginnering 来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开发却更多是一个工程问题。

在大模型开发中,我们一般不会去大幅度改动模型,而是将大模型作为一个调用工具,通过 Prompt Engineering、数据工程、业务逻辑分解等手段来充分发挥大模型能力,适配应用任务,而不会将精力聚焦在优化模型本身上。

在这里插入图片描述

大模型开发与传统的AI 开发在整体思路上有着较大的不同。

  • 传统AI 开发:首先需要将复杂的业务逻辑依次拆解,对于每个子业务构造训练数据与验证数据,对于每个子业务训练优化模型,最后形成完整的模型链路来解决整个业务逻辑。
  • 大模型开发:用 Prompt Engineering 来替代子模型的训练调优,通过 Prompt 链路组合来实现业务逻辑,用一个通用大模型 + 若干业务 Prompt 来解决任务,从而将传统的模型训练调优转变成了更简单、轻松、低成本的 Prompt 设计调优。

大模型开发与传统 AI 开发在评估思路上也有了质的差异。

  • 传统 AI 开发:构造训练集、测试集、验证集,通过在训练集上训练模型、在测试集上调优模型、在验证集上最终验证模型效果来实现性能的评估。
  • 大模型开发:更敏捷、灵活,不会在初期显式地确定训练集、验证集,而是直接从实际业务需求出发构造小批量验证集,设计合理 Prompt 来满足验证集效果。然后,不断从业务逻辑中收集当下 Prompt 的 Bad Case,并将 Bad Case 加入到验证集中,针对性优化 Prompt,最后实现较好的泛化效果。

在这里插入图片描述

在这里插入图片描述

1.2、大模型开发整体流程

在这里插入图片描述
在这里插入图片描述

1.2.1、设计

包括确定目标,设计功能。
确定目标: 在进行开发前,需要确定开发的目标,即要开发的应用的应用场景、目标人群、核心价值。一般应先设定最小化目标,从构建一个 mvp(最小可行性产品)开始,逐步进行完善和优化。

设计功能: 确定开发目标后,设计本应用所要提供的功能,首先确定应用的核心功能,然后延展设计核心功能的上下游功能;例如,想打造一款个人知识库助手,核心功能就是结合个人知识库内容进行问题的回答,上游功能——用户上传知识库、下游功能——用户手动纠正模型回答,就是子功能。

1.2.2、架构搭建

搭建整体架构: 搭建项目的整体架构,实现从用户输入到应用输出的全流程贯通。包括搭建整体架构和搭建数据库。

目前,绝大部分大模型应用都是采用的特定数据库+ Prompt + 通用大模型的架构。

推荐基于 LangChain 框架进行开发。LangChain 提供了 Chain、Tool 等架构的实现,可以基于 LangChain 进行个性化定制,实现从用户输入到数据库再到大模型最后输出的整体架构连接。

搭建数据库: 大模型应用需要进行向量语义检索,一般使用诸如 chroma 的向量数据库。搭建数据库需要收集数据并进行预处理,再向量化存储到数据库中。数据预处理一般包括从多种格式向纯文本的转化,例如 pdf、markdown、html、音视频等,以及对错误数据、异常数据、脏数据进行清洗。完成预处理后,需要进行切片、向量化构建出个性化数据库。

1.2.3、Prompt Engineering

明确 Prompt 设计的一般原则及技巧,构建出一个来源于实际业务的小型验证集,基于小型验证集设计满足基本要求、具备基本能力的 Prompt。

优质的 Prompt 对大模型能力具有极大影响,需要逐步迭代构建优质的 Prompt Engineering 来提升应用性能。

1.2.4、验证迭代

验证迭代在大模型开发中是极其重要的一步,指通过不断发现 Bad Case 并针对性改进 Prompt Engineering 来提升系统效果、应对边界情况。在完成上一步的初始化 Prompt 设计后,应该进行实际业务测试,探讨边界情况,找到 Bad Case,并针对性分析 Prompt 存在的问题,从而不断迭代优化,直到达到一个较为稳定、可以基本实现目标的 Prompt 版本。

1.2.5、前后端搭建

完成 Prompt Engineering 及其迭代优化之后,就完成了应用的核心功能,可以充分发挥大语言模型的强大能力。接下来搭建前后端,设计产品页面,让应用上线成为产品。

两种快速开发 Demo 的框架:Gradio 和 Streamlit,可以帮助个体开发者迅速搭建可视化页面实现 Demo 上线。

在完成前后端搭建之后,应用就可以上线体验了。接下来就需要进行长期的用户体验跟踪,记录 Bad Case 与用户负反馈,再针对性进行优化即可。

二、项目流程简析

基于个人知识库的问答助手介绍项目流程。

项目原理: 项目原理如下图所示,过程包括加载本地文档 -> 读取文本 -> 文本分割 -> 文本向量化 -> question向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。

在这里插入图片描述

2.1、项目规划与需求分析

1、项目目标: 基于个人知识库的问答助手

2、核心功能:
1、上传文档、创建知识库;
2、选择知识库,检索用户提问的知识片段;
3、提供知识片段与提问,获取大模型回答;
4、流式回复;
5、历史对话记录

3、确定技术架构和工具:

1、LangChain框架
2、Chroma知识库
3、大模型使用 GPT、科大讯飞的星火大模型、文心一言、GLM 等
4、前后端使用 Gradio 和 Streamlit。

2.2、数据准备与向量知识库构建
2.2.1、收集和整理用户提供的文档

用户常用文档格式有 pdf、txt、doc 等,首先使用工具读取文本,通常使用 langchain 的文档加载器模块,也可以使用 python 比较成熟的包进行读取。

由于目前大模型使用 token 的限制,需要对读取的文本进行切分,将较长的文本切分为较小的文本,这时一段文本就是一个单位的知识。

2.2.2、将文档词向量化

使用文本嵌入(Embeddings)对分割后的文档进行向量化,使语义相似的文本片段具有接近的向量表示。然后,存入向量数据库,这个流程正是创建 索引(index) 的过程。

向量数据库对各文档片段进行索引,支持快速检索。这样,当用户提出问题时,可以先将问题转换为向量,在数据库中快速找到语义最相关的文档片段。然后将这些文档片段与问题一起传递给语言模型,生成回答。

2.2.3、将向量化后的文档导入Chroma知识库,建立知识库索引

Chroma 向量库轻量级且数据存储在内存中,非常容易启动和开始使用。

用户知识库内容经过 embedding 存入向量知识库,然后用户每一次提问也会经过 embedding,利用向量相关性算法(例如余弦算法)找到最匹配的几个知识库片段,将这些知识库片段作为上下文,与用户问题一起作为 prompt 提交给 LLM 回答。

2.3、大模型集成与API连接
  • 集成GPT、星火、文心、GLM 等大模型,配置 API 连接。
  • 编写代码,实现与大模型 API 的交互,以便获取问题答案。
2.4、核心功能实现
  • 构建 Prompt Engineering,实现大模型回答功能,根据用户提问和知识库内容生成回答。
  • 实现流式回复,允许用户进行多轮对话。
  • 添加历史对话记录功能,保存用户与助手的交互历史。
2.5、核心功能迭代优化
  • 进行验证评估,收集 Bad Case。
  • 根据 Bad Case 迭代优化核心功能实现。
2.6、前端与用户交互界面开发
  • 使用 Gradio 和 Streamlit 搭建前端界面。
  • 实现用户上传文档、创建知识库的功能。
  • 设计用户界面,包括问题输入、知识库选择、历史记录展示等。
2.7、部署测试与上线
  • 部署问答助手到服务器或云平台,确保可在互联网上访问。
  • 进行生产环境测试,确保系统稳定。
  • 上线并向用户发布。
2.8、维护与持续改进
  • 监测系统性能和用户反馈,及时处理问题。
  • 定期更新知识库,添加新的文档和信息。
  • 收集用户需求,进行系统改进和功能扩展。
三、项目架构简析
3.1、整体架构

搭建一个基于大模型的个人知识库助手,基于 LangChain 框架搭建,核心技术包括 LLM API 调用、向量数据库、检索问答链等。项目整体架构如下:

在这里插入图片描述

项目从底向上依次分为 LLM 层、数据层、数据库层、应用层与服务层:

3.1.1、LLM 层

基于四种流行 LLM API (OpenAI-ChatGPT、百度文心、讯飞星火、智谱GLM)进行了 LLM 调用封装,支持用户以统一的入口、方式来访问不同的模型,支持随时进行模型的切换;

在 LLM 层,构建了一个 Self_LLM 基类,基类定义了所有 API 的一些共同参数(如 API_Key,temperature 等);在该基类基础上继承实现了上述四种 LLM API 的自定义 LLM。四种 LLM 的原生 API 封装在了统一的 get_completion 函数中。

3.1.2、数据层

包括个人知识库的源数据(包括 pdf、txt、md 等)以及 Embedding API,源数据经过 Embedding 处理可以被向量数据库使用;

3.1.3、数据库层

基于个人知识库源数据搭建的向量数据库,本项目中选择了 Chroma。在该层实现了源数据处理、创建向量数据库的方法;

3.1.4、应用层

应用层封装了整个项目的全部核心功能。基于 LangChain 提供的检索问答链基类进行了进一步封装,支持通过 model 参数进行不同模型切换以及便捷实现基于数据库的检索问答。

实现了两个检索问答链,分别是有历史记录的 Chat_QA_Chain 和没有历史记录的 QA_Chain;

3.1.5、服务层

实现了 Gradio 搭建 Demo 与 FastAPI 组建 API 两种方式来支持本项目的服务访问。

3.2、代码结构
-project
    -readme.md 项目说明
    -requirements.txt 使用依赖包的版本 
    -llm LLM调用封装
        -self_llm.py 自定义 LLM 基类
        -wenxin_llm.py 自定义百度文心 LLM
        -spark_llm.py 自定义讯飞星火 LLM
        -zhipuai_llm.py 自定义智谱AI LLM
        -call_llm.py 将各个 LLM 的原生接口封装在一起
        -test.ipynb 使用示例
    -embedding embedding调用封装
        -zhipuai_embedding.py 自定义智谱AI embedding
        -call_embedding.py 调用 embedding 模型 
    -data 源数据路径
    -database 数据库层封装
        -create_db.py 处理源数据及初始化数据库封装
    -qa_chain 应用层封装
        -qa_chain.py 封装检索问答链,返回一个检索问答链对象
        -chat_qa_chian.py:封装对话检索链,返回一个带有历史记录的对话检索链对象
        -get_vectordb.py 返回向量数据库对象
        -model_to_llm.py 调用模型
        -test.ipynb 使用示例
    -serve 服务层封装
        -run_gradio.py 启动 Gradio 界面
        -api.py 封装 FastAPI
        -run_api.sh 启动 API
        -test.ipynb 使用示例







3.3、项目逻辑

1、用户:可以通过 run_gradio 或者 run_api 启动整个服务;
2、服务层调用 qa_chain.py 或 chat_qa_chain 实例化对话检索链对象,实现全部核心功能;
3、服务层和应用层都可以调用、切换 prompt_template.py 中的 prompt 模板来实现 prompt 的迭代;
4、也可以直接调用 call_llm 中的 get_completion 函数来实现不使用数据库的 LLM;
5、应用层调用已存在的数据库和 llm 中的自定义 LLM 来构建检索链;
6、如果数据库不存在,应用层调用 create_db.py 创建数据库,该脚本可以使用 openai embedding 也可以使用 embedding.py 中的自定义 embedding

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户之前问过作为小白应该从哪里开始学编程,我推荐了Python,但现在用户说想先学C语言。我需要调整之前的建议,但保持同样的结构。用户可能对底层感兴趣,或者有特定目标,比如嵌入式系统、操作系统开发。不过作为小白,C语言可能比较难,需要更详细的指导。 首先,我得确认用户了解C语言的挑战,比如指针和内存管理,但也要鼓励他们,说明学习C的好处,比如打好基础。然后,按照之前的步骤结构,分阶段引导,从环境搭建到基础语法,再到项目练习,最后进阶内容。可能需要更多的比喻和简单例子,避免用户被吓到。 要注意用户是小白,所以例子要更简单,解释更详细。比如,变量部分用储物柜的比喻,指针用房间号的例子。项目方面,选择计算器、温度转换、成绩统计这些贴近生活的例子。同时,避坑指南部分要针对C常见错误,比如分号忘记、头文件缺失等。 还要比较C和Python的不同,说明为什么从C开始可能有挑战,但如果有兴趣和坚持是可以的。最后,鼓励用户,强调动手实践的重要性,并提供资源链接,比如编译器安装、在线学习平台。确保整个回答结构清晰,步骤明确,语言浅显易懂。</think>好的!想从C语言入门是个很棒的选择——它就像编程世界的「骨架」,能帮你深入理解计算机底层原理。不过要注意,C语言的学习曲线比Python陡峭(像直接骑两轮自行车),需要更多耐心。以下是**针对小白的C语言学习路线**,用生活化案例拆解: --- ### **C语言特点先知道**(心理准备) 1. **贴近硬件**:直接操作内存(像自己管理仓库库存) 2. **高效但复杂**:需要手动管理细节(像开手动挡汽车) 3. **影响深远**:C++/Java/Python等语言都借鉴了它的设计 --- ### **第一阶段:搭建「工作台」(第1天)** **工具准备**(就像木匠需要锯子和锤子): 1. **编译器安装**: - Windows:下载[MinGW](https://sourceforge.net/projects/mingw/) - Mac/Linux:系统自带`gcc`(终端输入`gcc --version`测试) 2. **编辑器推荐**: - [VS Code](https://code.visualstudio.com/)(安装C/C++扩展) - [Code::Blocks](http://www.codeblocks.org/)(新手友好) **验证安装**:写第一个程序(就像学做菜先煮鸡蛋) ```c #include <stdio.h> // 包含标准输入输出库 int main() { // 程序入口(像房子的主门) printf("Hello, 世界!\n"); // \n代表换行 return 0; // 告诉系统程序正常结束 } ``` ➔ 保存为`hello.c`,终端执行: ```bash gcc hello.c -o hello # 编译 ./hello # 运行(Windows用hello.exe) ``` --- ### **第二阶段:掌握「基础语法」(第2-7天)** **核心四件套**(像学做菜的刀工和火候): 1. **变量与数据类型**(储物柜分类管理) ```c int age = 20; // 整数柜(-2147483648 ~ 2147483647) float price = 9.8; // 小数柜(精确到6位) char grade = 'A'; // 字符柜(单引号) char name[] = "小明"; // 字符串(双引号+方括号) ``` 2. **输入输出**(与用户对话) ```c int score; printf("请输入分数:"); // 显示提示 scanf("%d", &score); // %d对应整数,&符号不能少! printf("你输入的是:%d\n", score); ``` 3. **条件语句**(if-else决策树) ```c int temperature; printf("当前温度:"); scanf("%d", &temperature); if (temperature > 30) { printf("建议开空调\n"); } else if (temperature < 10) { printf("记得穿羽绒服\n"); } else { printf("天气舒适\n"); } ``` 4. **循环结构**(重复劳动自动化) ```c // for循环:精确控制次数(像微波炉定时) for(int i=1; i<=5; i++) { printf("第%d次浇水\n", i); } // while循环:条件满足就执行(像烧水等沸腾) int water = 0; while(water < 100) { printf("当前水温:%d℃\n", water); water += 10; } ``` --- ### **第三阶段:攻克「难点关卡」(第2-3周)** **三大重点难点**(像学自行车时的刹车和平衡): 1. **数组**(批量数据管理) ```c // 存储一周温度 float temperatures[7] = {22.5, 23.0, 24.3, 21.7, 20.9, 25.1, 19.8}; printf("周三温度:%.1f℃\n", temperatures[2]); // 输出24.3 ``` 2. **函数**(代码模块化) ```c // 声明函数(像菜谱目录) float convertFtoC(float fahrenheit); int main() { float f = 77.0; printf("%.1f华氏度 = %.1f摄氏度\n", f, convertFtoC(f)); return 0; } // 定义函数(具体做菜步骤) float convertFtoC(float fahrenheit) { return (fahrenheit - 32) * 5 / 9; } ``` 3. **指针**(C语言精髓,像掌握仓库的钥匙) ```c int num = 10; // 定义一个变量 int *p = &num; // p存储num的地址(像记下储物柜编号) printf("num的值:%d\n", num); // 输出10 printf("通过指针访问:%d\n", *p); // *p表示取该地址的值 *p = 20; // 通过指针修改值 printf("修改后:%d\n", num); // 输出20 ``` --- ### **第四阶段:实战项目(第4周)** **推荐项目清单**(从简单到复杂): 1. **智能计算器**(支持加减乘除) ```c #include <stdio.h> int main() { char op; double num1, num2; printf("输入运算符(+ - * /): "); scanf("%c", &op); printf("输入两个数字: "); scanf("%lf %lf", &num1, &num2); switch(op) { case '+': printf("%.1lf + %.1lf = %.1lf", num1, num2, num1+num2); break; case '-': printf("%.1lf - %.1lf = %.1lf", num1, num2, num1-num2); break; case '*': printf("%.1lf * %.1lf = %.1lf", num1, num2, num1*num2); break; case '/': if(num2 != 0) printf("%.1lf / %.1lf = %.1lf", num1, num2, num1/num2); else printf("除数不能为0"); break; default: printf("无效运算符"); } return 0; } ``` 2. **温度单位转换器**(摄氏←→华氏) 3. **学生成绩管理系统**(存储多科成绩,计算平均分) --- ### **C语言常见问题急救包** | 问题 | 解决方法 | 类比解释 | |-----------------------|--------------------------|----------------------| | 编译报错`undefined reference` | 检查是否漏写main函数 | 像房子没装门 | | 程序闪退 | 在return前加`getchar();` | 让程序等待用户按回车 | | `scanf`不读取输入 | 检查变量前是否漏写`&`符号 | 像填快递单不写地址 | | 死循环 | 确认循环条件有终止机会 | 像烧水不关火 | --- ### **学习资源推荐** 1. **书籍**: - 《C Primer Plus》(详细面) - 《啊哈C语言》(漫画风格入门) 2. **网站**: - [菜鸟教程C语言](https://www.runoob.com/cprogramming/c-tutorial.html) - [Learn-C.org](https://www.learn-c.org/)(在线练习) 3. **视频**: - B站【C语言入门到精通】[浙江大学翁恺课程](https://www.bilibili.com/video/BV1dr4y1j7Mz) --- ### **关键学习建议** 1. **从模仿开始**:先抄写代码,再逐步修改 2. **理解内存模型**:画图辅助理解指针和数组 3. **坚持调试**:使用`printf`打印中间值(像给程序做X光检查) 现在就可以尝试这个指针练习: ```c #include <stdio.h> int main() { int a = 5; int *p = &a; printf("a的地址:%p\n", p); printf("通过指针改值前:%d\n", a); *p = 10; printf("改值后:%d\n", a); return 0; } ``` 你会看到通过指针可以直接修改变量的值——这就是C语言的魔法!✨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值