高斯消元法(普通列主元消元法)模板 ==》 还需要优化

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn = 220;
typedef double Matrix[maxn][maxn];

void swap(int a, int b) {
	int temp = a; 
	a = b;
	b = temp;
}
void Print(Matrix A, int n) {
	for(int i = 0; i < n; i++) {
		for(int j =0; j < n; j++)
			cout << A[i][j] << " ";
		cout << endl;  
	}
	for(int i = 0; i < n; i++)
	cout << " " << A[i][n] ;
	cout << endl;
}
int Gauss(Matrix A, int n) {  //计算方形矩阵 
	int i, j, k, r;
	for(i = 0; i < n; i++) {
		r = i;  //选一行与第i行交换 
		for(j = i+1; j < n; j++) 
			if(fabs(A[j][i]) > fabs(A[r][i])) r = j;
		if(r != i) for(j = 0; j <= n; j++) swap(A[r][j], A[i][j]);
		
		if(A[r][k] == 0) return 0;
		//与第i+1~n行消元 
		for(k = i+1; k < n; k++) {
			double f = A[k][i] / A[i][i]; //为了让A[k][i] = 0
			for(j = i; j <= n; j++) A[k][j] -= f*A[i][j]; 
		}
	}
	for(i = n-1; i >= 0; i--) {
			for(j = i+1; j < n; j++)
				A[i][n] -= A[j][n]*A[i][j];
			A[i][n] /= A[i][i];
	}
	return 1;
} 

int main() {
	Matrix B;
	int n; 
	cin >> n;
	for(int i = 0; i < n; i++) {
		for(int j = 0; j < n; j++) {
			cin >> B[i][j]; 
		}
	} 
	for(int i = 0; i < n; i++) {
		cin >> B[i][n];
	}
	Gauss(B, n);
	for(int i = 0; i < n; i++)
		cout << " " << B[i][n];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值