在2017CSP认证和蓝桥杯均出现
问题描述:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
算法思想:
①遍历数组,每找到一个局部峰值就向前遍历所有值,算出共同矩形的面积,每次对比保留最大值
代码:
// Pruning optimize
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int res = 0;
for (int i = 0; i < height.size(); ++i) {
if (i + 1 < height.size() && height[i] <= height[i + 1]) {
continue;
}
int minH = height[i];
for (int j = i; j >= 0; --j) {
minH = min(minH, height[j]);
int area = minH * (i - j + 1);
res = max(res, area);
}
}
return res;
}
};
②使用堆栈将复杂度降到最低:时间复杂度--高效率 和空间复杂度--栈开销 均为O(n)
维护一个栈,用来保存递增序列,相当于上面那种方法的找局部峰值,当当前值小于栈顶值时,取出栈顶元素,然后计算当前矩形面积,然后再对比当前值和新的栈顶值大小,若还是栈顶值大,则再取出栈顶,算此时共同矩形区域面积,照此类推,可得最大矩形。
代码:
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int res = 0;
stack<int> s;
height.push_back(0);
for (int i = 0; i < height.size(); ++i) {
if (s.empty() || height[s.top()] < height[i]) s.push(i);
else {
int cur = s.top();
s.pop();
res = max(res, height[cur] * (s.empty() ? i : (i - s.top() - 1)));
--i;
}
}
return res;
}
};
优化的简洁代码:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = 0;
stack<int> s;
heights.push_back(0);
for (int i = 0; i < heights.size(); ++i) {
while (!s.empty() && heights[s.top()] >= heights[i]) {
int cur = s.top(); s.pop();
res = max(res, heights[cur] * (s.empty() ? i : (i - s.top() - 1)));
}
s.push(i);
}
return res;
}
};
③想找出最大矩形的左边界和右边界,把矩形的左边界从数组的左边想右边移动,每移动一次求一次最大矩形面积,最后对所有 矩形面积求最大值。
#include <iostream>
using namespace std;
int solve(int hist[], int n)
// hist: contains the heights of the bars
// n: the number of the bars in the histogram.
{
int* arr = new int[n];// 申请一个额外的数组
arr[0] = hist[0];
int max = hist[0]; // 最大面积
for(int i=1; i<n; i++)
{
arr[i] = hist[i];
for(int j=i-1; j>=0; j--)
if(arr[j]>arr[i]){
if(arr[j]*(i-j)>max)
max = arr[j]*(i-j);
arr[j] = arr[i];
}
else break;
//数组arr里的元素,保持非递减的顺序。
}
//重新扫描一边,以更新最大面积
for(int i=0; i<n; i++)
if(arr[i]*(n-i)>max)
max = arr[i]*(n-i);
return max;
}
int main(int argc, char** argv)
{
int hist[] = {2,1,5,6,2,3};
int max = solve(hist, sizeof(hist)/sizeof(int));
cout<<max<<endl;
}
参考自:http://www.cnblogs.com/grandyang/p/4322653.html
http://blog.csdn.net/jiyanfeng1/article/details/8067265?locationNum=6