大数据高频面试题之Hive怎么解决数据倾斜

37 篇文章 1 订阅
23 篇文章 0 订阅

场景: MR中,shuffle阶段的一个key值对应了很多值,那么就会将这么多值分到一个分区中hive中,两个表做join maptask中一个任务处理的时间明显大于其他task的时间 就是出现了数据倾斜的问题

开启数据倾斜时负载均衡
set hive.groupby.skewindata=true;
思想:就是先随机分发并处理,再按照 key group by 来分发处理。
操作:当选项设定为 true,生成的查询计划会有两个 MRJob。
第一个 MRJob 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 GroupBy Key 有可能被分发到不同的Reduce 中,从而达到负载均衡的目的;

第二个 MRJob 再根据预处理的数据结果按照 GroupBy Key 分布到 Reduce 中(这个过程可以保证相同的原始 GroupBy Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

总结:它使计算变成了两个 mapreduce,先在第一个中在 shuffle 过程 partition 时随机给 key 打标记,使每个 key 随机均匀分布到各个reduce 上计算,但是这样只能完成部分计算,因为相同 key 没有分配到相同 reduce 上。所以需要第二次的 mapreduce,这次就回归正常 shuffle,但是数据分布不均匀的问题在第一次 mapreduce 已经有了很大的改善,因此基本解决数据倾斜。因为大量计算已经在第一次mr 中随机分布到各个节点完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值