poj2886

这道题让我对线段树的使用有了一个新的认识,它可以支持修改地以nlongn的复杂度在线查询排在第几的数是谁 大笑
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 500005
using namespace std;
int n, k, f[N];
struct aa{
    int num;
    char s[15];    
}a[N];

struct node{
    int l, r, v;    
}tree[N * 4];

void build(int l, int r, int t){
    tree[t].l = l;
    tree[t].r = r;
    tree[t].v = r - l + 1;
    if(l != r){
        int mid = (l + r)>>1;
        build(l, mid, t + t);
        build(mid + 1, r, t + t + 1);    
    }    
}

int ask(int v, int t){
    tree[t].v --;
    if(tree[t].l == tree[t].r){
        return tree[t].l;    
    }    
    if(v > tree[t + t].v)return ask(v - tree[t + t].v, t + t + 1);
    else return ask(v, t + t);
}
int main()
{
    int k = (int)sqrt(N * 1.0);
    for(int i = 1; i <= k; i ++){
        for(int j = i + 1; i * j < N; j ++)
        f[i * j] += 2;
        f[i * i] ++;
    }
    while(scanf("%d%d", &n, &k) != EOF){
        build(0, n - 1, 1);
       for(int i = 0; i < n; i ++)scanf("%s %d", a[i].s, &a[i].num);
        int cnt = 1, pos, &num = tree[1].v, imax = 0, ans;
        while(num){
            pos = ask(k, 1);
            if(imax < f[cnt]){ans = pos; imax = f[cnt];}
            cnt ++;
            if(num == 0)break;
            if(a[pos].num > 0)k = (k - 2 + a[pos].num)%num + 1;
            else k = ((k - 1 + a[pos].num) % num + num) % num + 1;    
        }printf("%s %d\n", a[ans].s, imax);
    }
    return 0;    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值