杜教BM黑科技

杜教BM黑科技

原理未知,主要适用于线性递推式,据说这个BUG级模板可以求线性递推式的第n项,只要手推递推式的前几项,放入模板就能求出第n项,前几项求出的的越多越好,一般推出前8项就可以,但是有的题还是要多几项。

例题 hdu6198 number number number

方法一:找规律 ,输出 f[2*k+3]-1的值就行,f[i]表示斐波那契数列第i项的值。

方法二:黑科技,先打表前几项套模板。

代码1.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N =  1e5+50;
const double S=2.236067;
const int  p=998244353;
struct mat
{
    ll a[2][2];
};
mat mat_mul(mat x,mat y)
{
    mat res;
    memset(res.a,0,sizeof(res.a));
    for(int i=0; i<2; i++)
        for(int j=0; j<2; j++)
            for(int k=0; k<2; k++)
                res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%p;
    return res;
}
ll mat_pow(ll n)
{
    mat c,res;
    c.a[0][0]=c.a[0][1]=c.a[1][0]=1;
    c.a[1][1]=0;
    memset(res.a,0,sizeof(res.a));
    //for(int i=0; i<2; i++)
    res.a[0][0]=1;//构造斐波那契数列
    res.a[0][1]=0;
    while(n)
    {
        if(n&1)
            res=mat_mul(res,c);
        c=mat_mul(c,c);
        n=n>>1;
    }
    return res.a[0][0];
}
int main()
{
    ll n;
    while(scanf("%lld",&n)!=EOF)
    {
        ll ans=mat_pow(n*2+2)-1;
        printf("%lld\n",ans);
    }
}

代码二:(BM)

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((long long)(x).size())
typedef vector<long long> VI;
typedef long long ll;
typedef pair<long long,long long> PII;
const ll mod=998244353;
ll powmod(ll a,ll b)
{
    ll res=1;
    a%=mod;
    assert(b>=0);
    for(; b; b>>=1)
    {
        if(b&1)
            res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}
// head

long long _,n;
namespace linear_seq
{
const long long N=10010;
ll res[N],base[N],_c[N],_md[N];

vector<long long> Md;
void mul(ll *a,ll *b,long long k)
{
    rep(i,0,k+k) _c[i]=0;
    rep(i,0,k) if (a[i])
        rep(j,0,k)
        _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
    for (long long i=k+k-1; i>=k; i--)
        if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
    rep(i,0,k) a[i]=_c[i];
}
long long solve(ll n,VI a,VI b)
{
    // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //printf("%d\n",SZ(b));
    ll ans=0,pnt=0;
    long long k=SZ(a);
    assert(SZ(a)==SZ(b));
    rep(i,0,k) _md[k-1-i]=-a[i];
    _md[k]=1;
    Md.clear();
    rep(i,0,k) if (_md[i]!=0)
        Md.push_back(i);
    rep(i,0,k) res[i]=base[i]=0;
    res[0]=1;
    while ((1ll<<pnt)<=n)
        pnt++;
    for (long long p=pnt; p>=0; p--)
    {
        mul(res,res,k);
        if ((n>>p)&1)
        {
            for (long long i=k-1; i>=0; i--)
                res[i+1]=res[i];
            res[0]=0;
            rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
        }
    }
    rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
    if (ans<0)
        ans+=mod;
    return ans;
}
VI BM(VI s)
{
    VI C(1,1),B(1,1);
    long long L=0,m=1,b=1;
    rep(n,0,SZ(s))
    {
        ll d=0;
        rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
        if (d==0)
            ++m;
        else if (2*L<=n)
        {
            VI T=C;
            ll c=mod-d*powmod(b,mod-2)%mod;
            while (SZ(C)<SZ(B)+m)
                C.pb(0);
            rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
            L=n+1-L;
            B=T;
            b=d;
            m=1;
        }
        else
        {
            ll c=mod-d*powmod(b,mod-2)%mod;
            while (SZ(C)<SZ(B)+m)
                C.pb(0);
            rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
            ++m;
        }
    }
    return C;
}
long long gao(VI a,ll n)
{
    VI c=BM(a);
    c.erase(c.begin());
    rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
    return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};

int main()
{
    while(~scanf("%lld", &n))
    {
        VI vi;
        vi.push_back(5);
        vi.push_back(13);
        vi.push_back(34);
        vi.push_back(89);
        //vi.push_back(232);
        //vi.push_back(609);
        //vi.push_back(102315);
        //vi.push_back(437250);
        //vi.push_back(1834503);
        printf("%lld\n",(linear_seq::gao(vi,n-1)%mod-1)%mod);
    }
}

注意的是,BM模板递推式有所有结果都减一的话,建议先找规律后减一,否则自己需要手打至少前八项。以这个题为例,如果最后减一的话,只需要前四项就够了。

下面是手打前六项的。

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (long long i=a;i<n;i++)
#define per(i,a,n) for (long long i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((long long)(x).size())
typedef vector<long long> VI;
typedef long long ll;
typedef pair<long long,long long> PII;
const ll mod=998244353;
ll powmod(ll a,ll b)
{
    ll res=1;
    a%=mod;
    assert(b>=0);
    for(; b; b>>=1)
    {
        if(b&1)
            res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}
// head

long long _,n;
namespace linear_seq
{
const long long N=10010;
ll res[N],base[N],_c[N],_md[N];

vector<long long> Md;
void mul(ll *a,ll *b,long long k)
{
    rep(i,0,k+k) _c[i]=0;
    rep(i,0,k) if (a[i])
        rep(j,0,k)
        _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
    for (long long i=k+k-1; i>=k; i--)
        if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
    rep(i,0,k) a[i]=_c[i];
}
long long solve(ll n,VI a,VI b)
{
    // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //printf("%d\n",SZ(b));
    ll ans=0,pnt=0;
    long long k=SZ(a);
    assert(SZ(a)==SZ(b));
    rep(i,0,k) _md[k-1-i]=-a[i];
    _md[k]=1;
    Md.clear();
    rep(i,0,k) if (_md[i]!=0)
        Md.push_back(i);
    rep(i,0,k) res[i]=base[i]=0;
    res[0]=1;
    while ((1ll<<pnt)<=n)
        pnt++;
    for (long long p=pnt; p>=0; p--)
    {
        mul(res,res,k);
        if ((n>>p)&1)
        {
            for (long long i=k-1; i>=0; i--)
                res[i+1]=res[i];
            res[0]=0;
            rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
        }
    }
    rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
    if (ans<0)
        ans+=mod;
    return ans;
}
VI BM(VI s)
{
    VI C(1,1),B(1,1);
    long long L=0,m=1,b=1;
    rep(n,0,SZ(s))
    {
        ll d=0;
        rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
        if (d==0)
            ++m;
        else if (2*L<=n)
        {
            VI T=C;
            ll c=mod-d*powmod(b,mod-2)%mod;
            while (SZ(C)<SZ(B)+m)
                C.pb(0);
            rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
            L=n+1-L;
            B=T;
            b=d;
            m=1;
        }
        else
        {
            ll c=mod-d*powmod(b,mod-2)%mod;
            while (SZ(C)<SZ(B)+m)
                C.pb(0);
            rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
            ++m;
        }
    }
    return C;
}
long long gao(VI a,ll n)
{
    VI c=BM(a);
    c.erase(c.begin());
    rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
    return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};

int main()
{
    while(~scanf("%lld", &n))
    {
        VI vi;
        vi.push_back(4);
        vi.push_back(12);
        vi.push_back(33);
        vi.push_back(88);
        vi.push_back(232);
        vi.push_back(609);
        //vi.push_back(102315);
        //vi.push_back(437250);
        //vi.push_back(1834503);
        printf("%lld\n",linear_seq::gao(vi,n-1)%mod);//区别
    }
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值