手镯定理

手镯定理

手镯定理即【Polya定理】就是一个手镯是由n个珠子构成的,现在我们有k种颜色,每个珠子可以染成这k种颜色中的任意一种,让我们来求算一下我们可以染出多少种本质上并不相同的手环来;

例题 给你顶部和底部是正 m 边形的柱体,侧面是边长为 n 的正方形,有 c 种颜色,一个侧面有 nn 个格子可以染色,总共有 mn*n 个格子可以染色。

题目
可以沿着侧面方向旋转,旋转前和旋转后染色样子一样,算同一种方案,求有多少种染色方案。

公式
L = 1 / |G| (k^c[0]+ k^c[1] + k^ c[2] + k^c[3]+k^c[4]+.......k^c[|G-1|]);
L 为方案数,G=m,k=c^(n*n),c[i]=gcd(m,i);
证明 置换群:G;置换群中置换个数:|G|;

我们喜欢用 m 阶循环这种记号来表示 置换。
m 阶循环:相邻元素可以直接到达,第 m 个位置可以到达第 1 个位置。
例如:5 阶循环:(1 5 2 4 3),1->5->2->4->3->1……,3->4->2->5->1->3……

前置技能还有:
共轭类格式:1^(c1) 2^(c2) … (n)^(cn),其中 cn 代表 n 阶置换的个数。
k 不动置换类(Zk):包含 k 的置换阶为 1
等价类(Ek):k 的轨迹
重要定理:|Ek||Zk| = |G|

Burnside 引理:群 G 是在这 n 个对象上用 m 种颜色进行染色后的方案集合上的置换群
不同等价类个数:L = sum{c1(ai)} / |G|, 1 <= i <= |G|; 其中 ai 是第 i 个置换
因为 sum{Zj} = sum{c1(ai)}, 1 <= j <= n, 1 <= i <= |G|; 其中 n 是置换对象个数
不同等价类个数还可以等于:L = sum{Zi} / |G|, 1 <= i <= n;

Polya 定理:群 G 是作用在 n 个对象上的置换群
不同等价类个数:L = sum{m^c(ai)} / |G|, 1 <= i <= |G|; 其中 c(ai) 为置换 ai 的循环节数(有多少个循环),一个置换对象有 m 种不同情况

区别和联系:
Polya 定理的群 G 是作用在 n 个对象上的置换群,相应地,Burnside 定理中的群 G 是在这 n 个对象上用 m 种颜色进行染色后的方案集合上的置换群。
Burnside 的 ai 和 Polya 的 ai 是不一样的,但是都是求在 ai 置换之后不变的染色方案数的和 / |G|,因为每种染色情况都重复出现了 |G| 次
Burnside 的 ai 作用下不变的图像 正好是对应着 Polya 的 ai 的循环节中的对象染以相同的颜色所得到的图像,所以 c1(ai) = m^c(ai)

本题思路:
Polya 定理做法:
对于一个侧面有 k^(nn) 种染色情况,也就是一个置换对象有 k^(nn) 种不同的情况。
因为正 m 边形,所以共有旋转 0 个位置、1个位置、2个位置……旋转 m-1 个位置 等 m 种置换方法。
假设位置 0 到 m-1.
对于旋转 k 个位置这种置换:第 pos 个位置 和 第 (pos+k*t)%m 个位置一样, t >= 0.
pos+gcd(k, m)*t1,其中 0 <= pos+gcd(k, m)*t1 < m,代表我们能到达的所有位置。
每一个轨迹中位置的个数 t = m/gcd(k, m)。由于在本题中不同轨迹中的位置的个数相同,所以轨迹的个数就是 m/t = gcd(k, m)。因此,旋转 k 个位置之后和原来相同的染色方案数就是 (k(n*n))gcd(k, m)

证明链接

代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N=1e6+5;
const int maxn=1e5+5;
const int p=1e9+7;
ll quick(ll a,ll b)
{
   ll sum=1;
   while(b)
   {
       if(b&1)
       {
           sum=sum*a%p;
       }
       a=a*a%p;
       b>>=1;
   }
   return sum;
}
int main()
{
    int n,m,c;
    scanf("%d %d %d",&n,&m,&c);
    ll k=n*n;
    k=quick(c,k);
    ll ans=0;
    for(int i=0;i<m;i++)
    {
        int s1=__gcd(m,i);
        ans=(ans+quick(k,s1))%p;
    }
    ans=ans*quick(m,p-2)%p;
    printf("%lld\n",(ans+p)%p);
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值