GCD(最大公约数)
最大公约数指某几个整数共有因子中最大的一个。
GCD即Greatest Common Divisor.
例如,12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数。
代码:迭代实现:
int Gcd(int a, int b)
{
while(b != 0)
{
int r = b;
b = a % b;
a = r;
}
return a;
}
递归实现:
int gcd(int a,int b)
{
if(b==0)
return a;
return
gcd(b,a%b);
}
LCM(最小公倍数)
和最大公约数(gcd)的关系:gcd(a, b)×lcm(a, b) = ab。
代码:
int lcm(int a,int b)
{
return a/gcd(a,b)*a;
}
有三个正整数a,b,c(0<a,b,c<10^6),其中c不等于b。若a和c的最大公约数为b,现已知a和b,求满足条件的最小的c。
2 6 2 12 4
4 8
题意:根据最大公约数与最小公倍数的关系,已知一个数a与最大公约数,求得另一个数(最小值)。
题解:设另一个数为最大公约数的的整数倍(从2开始)得到n,再判断n与a的最大公约数为b,直到出现第一个满足条件的m(最小值)。
代码:
#include<cstdio>
#include<iostream>
using namespace std;
int gcd(int a,int b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
int main()
{
int i,j,n,m,c,k,t;
scanf("%d",&j);
for(i=1;i<=j;i++)
{
scanf("%d%d",&n,&m);
c=m*2;
while(gcd(c,n)!=m)
c+=m;
printf("%d\n",c);
}
return 0;
}