C - 又见GCD

点击打开链接

GCD(最大公约数)

最大公约数指某几个整数共有因子中最大的一个。

GCD即Greatest Common Divisor.

例如,12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数。

代码:

迭代实现:
int Gcd(int a, int b)
{
    while(b != 0)
    {
      int r = b;
      b = a % b;
      a = r;
    }
    return a;
}


递归实现:
int gcd(int a,int b)
{
    if(b==0)
        return a;
    return 
        gcd(b,a%b);
}

LCM(最小公倍数)

和最大公约数(gcd)的关系:gcd(a, b)×lcm(a, b) = ab。

代码:

int lcm(int a,int b)
{
	return a/gcd(a,b)*a;
}


有三个正整数a,b,c(0<a,b,c<10^6),其中c不等于b。若a和c的最大公约数为b,现已知a和b,求满足条件的最小的c。 
Input
第一行输入一个n,表示有n组测试数据,接下来的n行,每行输入两个正整数a,b。 
Output
输出对应的c,每组测试数据占一行。 
Sample Input
2
6 2
12 4
Sample Output
4
8

题意:根据最大公约数与最小公倍数的关系,已知一个数a与最大公约数,求得另一个数(最小值)。

题解:设另一个数为最大公约数的的整数倍(从2开始)得到n,再判断n与a的最大公约数为b,直到出现第一个满足条件的m(最小值)。


代码:

#include<cstdio>
#include<iostream>
using namespace std;

int gcd(int a,int b)
{
   if(b==0)
   return a;
   return gcd(b,a%b);
}
int main()
{
	int i,j,n,m,c,k,t;
	scanf("%d",&j);
	for(i=1;i<=j;i++) 
	{
		scanf("%d%d",&n,&m);
		c=m*2;
		while(gcd(c,n)!=m)
		c+=m;
		printf("%d\n",c);
		
	}
	
return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值