容斥+莫比乌斯反演+分块优化-BZOJ2301

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2

2 5 1 5 1

1 5 1 5 2
Sample Output
14

3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301

题目分析:首先n就是五万,因此每次即使是O(n)的计算总的下来也是O(n^2)了,因此对于每次操作我们要让时间复杂度小于O(n),题意很清楚
先将原式变形:
a / k <= x / k <= b / k,c / k <= y / k <= d / k,gcd(x / k, y / k) = 1,令cal(b / k,d / k)为1 <= x / k <= b / k,1 <= y / k <= d / k时取出的满足条件的个数,则根据容斥原理有
ans = cal(b / k,d / k) - cal((a - 1) / k,d / k) - cal((c - 1) / k,b / k) + cal((a - 1) / k,(c - 1) / k),因为1~a-1和1~c-1都不在我们所求的范围内,又减的时候这段区间减了两次,因此要再加上一个,接下来看cal函数,这里要用到分块求和,如果不做优化,就是直接枚举公约数ans += mob[i] * (l / i) * (r / i)但这样会超时,考虑到不能整除的特性,在很大一段区间内(l / i)和(r / i)的值是相同的,举个简单的例子,l = 10,r = 11那么可以看出 i从6到10,l / i和r / i的值都是1,因此考虑分块求和,从i开始最长的相等区间长度为min(l / (l / i),r / (r / i)),这里如果不能理解的话,比如l / (l / i),设l / i = p,p表示整除时的值,那么l / p就是从i开始整除值为p的个数了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll long long
using namespace std;
const int maxn=50000;
int prime[maxn+10],mu[maxn+10],isprime[maxn+10],sum[maxn];
int  cnt=0;
void init()//莫比乌斯
{
    memset(isprime,0,sizeof(isprime));
    mu[1]=1;
    sum[1]=1;
    for(int i=2; i<maxn; i++)
    {
        if(!isprime[i])
        {
            prime[++cnt]=i,mu[i]=-1;
        }
        for(int j=1; j<=cnt&&prime[j]*i<maxn; j++)
        {

            isprime[prime[j]*i]=1;
            if(i%prime[j]==0)
            {
                mu[prime[j]*i]=0;
                break;
            }
            else
            {
                mu[i*prime[j]]=-mu[i];
            }
        }
        sum[i]=sum[i-1]+mu[i];
    }

}
int solve(int l,int r)
{
    if(l>r)swap(l,r);
    int ans=0;
    for(int i=1,last=0;i<=l;i=last+1)//分块优化
    {
        last=min(l/(l/i),r/(r/i));
        ans+=(l/i)*(r/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}
int main()
{
    int t;
    int ca=1;
    init();
    int a,b,c,d,k;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
        int ans=0;
        ans+=solve(b/k,d/k);
        ans-=solve((a-1)/k,d/k);
        ans-=solve((c-1)/k,b/k);
        ans+=solve((a-1)/k,(c-1)/k);
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值