飞腾性能调优

本文探讨了随着科技发展,CPU在大数据交互和运算中的关键作用。文章介绍了多核架构的重要性,特别是ARM在功耗和计算效率方面的优势。接着,对比了SMP和NUMA两种架构,指出SMP的扩展瓶颈在于内存访问冲突,而NUMA通过分布式内存访问提高了并行性。飞腾处理器利用NUMA技术解决了SMP的总线瓶颈问题,通过性能调优,提供更好的多核扩展能力和计算性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NUMA
21 世纪以来随着科技大步想抢进步, 信息时代来临, 5G、 云计算、 物联网等技术蓬勃发
展, 而这一切都离不开大量数据的交互以及庞大的运算, 在这其中, 电脑的“心脏”----CPU,
起到了扮演着举足轻重的作用, 但是功耗和冷却两大限制极大的影响了单核算力的发展, 为
了满足这些需求, 多核架构成为最重要的演进方向, 其中 ARM 在多核和功耗方面一直走在
世界的前列。
最早的多核处理器多使用 SMP(Symmetric Multi-Processor, 即: 对称多处理器结构) 技
术, 如图 2-1 所示, 对称多处理器结构, 是指服务器中多个 CPU 对称工作, 无主次或从属关
系, 各 CPU 共享相同的物理内存, 每个 CPU 访问内存中的任何地址所需时间是相同的, 因
此 SMP 也被称为一致存储器访问结构(UMA: Uniform Memory Access)
SMP 服务器的主要特征是共享, 系统中所有资源(CPU、 内存、 I/O 等)都是共享的。 也正
是由于这种特征, 导致了 SMP 服务器的主要问题, 那就是它的扩展能力非常有限。
对于 SMP 服务器而言, 每一个共享的环节都可能造成 SMP 服务器扩展时的瓶颈, 而最
受限制的则是内存。 由于每个 CPU 必须通过相同的内存总线访问相同的内存资源, 因此随着
CPU 数量的增加, 内存访问冲突将迅速增加, 最终会造成 CPU 资源的浪费, 使 CPU 性能的
有效性大大降低。
由于 SMP 在扩展能力上的限制, 人们开始探究如何进行有效地扩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值