用C++来实现关系矩阵的性质(自反性、反自反性、对称性、反对称性、)的判断

实验题目:编程实现关系性质的判断

1、自反性:主对角线元素全为1

2、反自反性:主对角线元素全为0

3、对称性:矩阵为对称矩阵

4、反对称性:如果a[i][j] = 1,且i != j,则a[j][i] = 0

#include <bits/stdc++.h>
using namespace std;

int main(){
	int a[4][4];
	bool reflexivity = true; //自反性标记
	bool disreflexivity = true; //反自反性标记
	bool symmetry = true; //对称性标记
	bool antisymmetry = true; //反对称性标记 
    //输入关系矩阵
	cout << "请输入数组元素:" << endl; 
	for (int i = 0; i < 4; ++i){
		for (int j = 0; j < 4; ++j){
			cin >> a[i][j];
		}
	}
	//判断自反性
	//主对角线元素全为1,满足自反性 
	for (int i = 0; i < 4; ++i){
		if (a[i][i] != 1){
			reflexivity = false;
		}
	} 
	//判断反自反性
	//主对角线元素全为0,满足反自反性
	 for (int i = 0; i < 4; ++i){
		if (a[i][i] != 0){
			disreflexivity = false;
		}
	} 
	//判断对称性
	//矩阵为对称矩阵,满足对称性
	for (int i = 0; i < 4; ++i){
		for (int j = 0; j < 4; ++j){
			if (a[i][j] != a[j][i]){
				symmetry = false;
			}
		}
	} 
	//判断反对称性 
	//如果a[i][j] = 1,且 i != j,则a[j][i] = 0
	for (int i = 0; i < 4; ++i){
		for (int j = 0; j < 4; ++j){
			if (a[i][j] == 1 && i != j && a[j][i] != 0){
				antisymmetry = false;
			}
		}
	} 
	
	if (reflexivity == true){
		cout << "矩阵满足自反性" << endl;
	}
	if (disreflexivity == true){
		cout << "矩阵满足反自反性" << endl;
	}
	if (symmetry == true){
		cout << "矩阵满足对称性" << endl; 
	}
	if (antisymmetry == true){
		cout << "矩阵满足反对称性" << endl; 
	}
	return 0;
} 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Spraing※boy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值