基于Mapreduce的推荐器原理和实现

本文介绍了基于MapReduce的推荐器工作原理和实现过程,包括用户对商品的喜好矩阵与商品相似矩阵的运算,通过7步MapReduce程序生成推荐度,并针对大数据量进行了分布式编程的优化讨论。
摘要由CSDN通过智能技术生成

原理:item相似矩阵*user对item喜好矩阵   得到 预测的user对所有item的喜好矩阵(推荐度),排列取高


Recommender程序实现(初):

CardID:卡号,对应于用户

ShopID:店铺标识

步骤1

消费记录文件作为输入,生成用户(银行卡)数据、评分

MAP

在消费记录文件中,提取CardIDShopID

输入:(LongString),Long表示文件中的位置,String表示该行的消费记录

输出:(CardIDShopID),如98955/ 590

REDUCE

先对每个用户统计ShopID,再跟据评分系统评分

输出:(CardIDVector),Vector中存放该用户消费过的所有商铺和评分。如

98955/ [590:3.0, 22:4.0, 9059:1.0]


步骤2

步骤1的结果文件作为输入,衡量店铺的相关程度

MAP

输入:(CardIDVector),如98955/ [590:3.0, 22:4.0, 9059:1.0]

输出:(ShopID1,【ShopID2s12】),s12表示12的相关程度,如590/[2212.0]

REDUCE

对每个店铺统计其他店铺的相关度

输出:(ShopID1Vector),Vector中存放其他店铺和该店铺的相关度。如

590/[2212.0951.0...90593.0...]


步骤3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值