- 博客(8)
- 收藏
- 关注
原创 dnn模型参数调优经验
learning rate调优1)在数据集较小的情况下,nn的learning rate大于embed的learning rate模型的效果会更好,这主要是因为数据集小,模型无法收敛。而nn能更快的拟合数据集,导致效果会好一些;2)在数据充分的情况下,nn的learning rate小于embed的learning rate模型的效果会更好,在稀疏的工业场景下,embed的更新频率一般要低于nn,将embed的learning rate设置大一些会有更好的效果。同时这也是尽量让模型用embeding
2020-05-12 16:56:06 3033
原创 深度学习之蒸馏模型
蒸馏模型蒸馏模型的目的是为了将大模型/复杂模型学习到的东西传递给小模型。大模型将学习到的东西浓缩在输出值之中,输出值是一个0~1的概率值,我们称之为soft-target。可以通过设置温度T来调节输出值的分布,T越大得到的soft-target越软(均匀)。很显然假设复杂模型输出的solf target是100%准确的话,以0~1的soft target代替原样本中的[0, 1]这种hard ...
2020-02-20 15:43:23 1679
原创 推荐领域常见的dnn模型框架结构
dindin中文名深度兴趣网络,由阿里提出并使用到工业上。din主要解决的问题是multi-hot特征的处理方式。传统的multi-hot特征的处理方式大多都是对多个id embedding求均值作为该multi-hot特征最终对输入。din的思想是根据待预估的对象对multi-hot特征的id embedding进行加权计算均值。以我们在广告上的尝试作为例子对din的网络结构进行介绍。首先我...
2020-02-20 14:35:26 1861
原创 多目标学习之esmm
ctr/cvr联合训练是多目标学习的重要应用,在我们的广告推荐中被证实有效;背景:cvr模型训练的数据较少(ctr/cvr),却需要对整个大盘数据进行预估,这个不科学,因此希望能够利用到整个大盘对数据,比如show/ctr对数据;ctr/cvr联合训练将ctr的数据(show/ctr)也合并到cvr训练数据中,训练数据label由原来的二维表示是否转化调整成二维表示是否点击(第一维)和...
2020-02-19 23:25:53 764 1
原创 机器学习常见基础概念一
1 信息增益比决策树中信息增益比大的特征优先选择2 基尼系数基决策树中基尼系数小的特征优先选择,和信息增益比刚好相反。尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好3 剪枝中的正则化参数α一般来说,α越大,则剪枝剪的越厉害,生成的最优子树相比原生决策树就越偏小。4 鲁棒性鲁棒性/抗变换性(英文:robustness)原是统计学中的一个专门术语,20世纪70年代初开始在控制...
2018-07-03 09:25:18 168
转载 Greenplum优化
尽量选择连接条件作为Distribution Key,如有个SQL:insert into tablec (auction_id,….) select * from tablea left join talbeb on tablea.selid=tablec.id;优化前耗时120秒,优化方式:将tablea的Distribution Key 改为selid,tableb的改为id,tablec的...
2018-07-03 09:11:42 962
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人