d6e7f8
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
35、机器学习模型的维护、发展阶段与常见设计模式
本文深入探讨了机器学习模型的维护策略、AI就绪的三个发展阶段以及常见的设计模式。内容涵盖模型陈旧问题与监控方法、组织AI成熟度的阶段性特征、以及针对不同用例(如自然语言理解、计算机视觉、预测分析等)的设计模式分类与应用。此外,还详细解析了各类设计模式的操作步骤和实际场景中的应用案例,帮助开发者和组织更高效地构建、维护和优化机器学习系统,提升模型性能和业务价值。原创 2025-09-09 01:33:59 · 42 阅读 · 0 评论 -
34、机器学习设计模式与生命周期全解析
本文深入解析了机器学习的设计模式与生命周期关键环节,涵盖可重复性、数据与模型管理、负责任AI等设计模式,以及发现、开发和部署阶段的核心任务。通过合理应用设计模式并精细管理生命周期各阶段,可以高效构建、部署和维护机器学习解决方案,为业务带来实际价值。原创 2025-09-08 10:59:23 · 64 阅读 · 0 评论 -
33、机器学习模型的公平性与设计模式
本文探讨了机器学习模型的公平性评估与优化方法,包括调整分类阈值、使用 What-If Tool 等工具。同时,介绍了多种机器学习设计模式,涵盖数据表示、问题表示、模型训练、推理弹性等方面,并分析了它们的应用场景和相互关系。通过综合运用这些设计模式和公平性方法,可以构建性能更好、更公平、更可解释的机器学习模型,满足不同利益相关者的需求。最后,以贷款审批模型为例,展示了如何综合实践这些方法。原创 2025-09-07 13:47:17 · 93 阅读 · 0 评论 -
32、机器学习中的可解释性与公平性
本文探讨了机器学习中的可解释性与公平性,包括可解释性AI在模型决策中的作用,数据偏差对模型的影响,以及公平性设计模式在缓解问题性偏差中的应用。通过案例分析和实践建议,帮助读者更好地构建透明、公平的机器学习模型。原创 2025-09-06 10:56:28 · 41 阅读 · 0 评论 -
31、机器学习模型评估与可解释性
本文探讨了机器学习模型评估与可解释性的重要性。模型的性能提升并不总是等同于实际业务价值,因此需要将模型效果转化为具体的实用价值,如减少弃单或提高利润。此外,文章深入分析了可解释性在不同场景中的应用,包括医疗、金融和交通等行业,讨论了简单模型和复杂模型的可解释性方法,如特征归因,并介绍了SHAP库和Google Cloud的Explainable AI平台的使用方式。最后,对比了采样Shapley和集成梯度(IG)两种特征归因方法,并探讨了可解释性在实际应用中面临的挑战与未来发展方向。原创 2025-09-05 09:41:47 · 52 阅读 · 0 评论 -
30、机器学习中的设计模式与负责任的AI实践
本文详细介绍了在机器学习实践中如何通过设计模式来提高模型的可重复性、可解释性和公平性。文章涵盖了多种设计模式,包括确保数据处理和模型预测一致性的Transform、Repeatable Splitting、Windowed Inference等模式,以及负责任AI中的Heuristic Benchmark、解释性预测和公平性透镜等模式。此外,文章还提供了Mermaid流程图来展示启发式基准的使用流程和负责任AI的开发流程,旨在帮助开发者构建更加可靠、可信和公平的机器学习系统。原创 2025-09-04 15:55:57 · 79 阅读 · 0 评论 -
29、机器学习中的特征存储与模型版本管理
本文探讨了机器学习中的特征存储与模型版本管理设计模式。特征存储通过分离在线和离线存储,满足了大规模数据处理和低延迟服务需求,并支持特征重用。模型版本管理解决了模型更新时的向后兼容性问题,支持多版本部署、性能监控和A/B测试。文中还比较了不同技术栈的实现方案,包括开源工具和云服务,并讨论了模型版本与新模型资源的选择策略。通过合理应用这些技术,可以提高机器学习模型的开发效率、可靠性和可维护性。原创 2025-09-03 16:02:14 · 66 阅读 · 0 评论 -
28、机器学习特征管理:特征存储模式与 Feast 应用
本文探讨了机器学习中的特征管理问题,重点介绍了特征存储模式的重要性及其解决方案,并详细讲解了开源特征存储工具Feast的应用方式。通过解决传统特征工程方法中存在的问题,如特征复用困难、数据治理难题、训练-服务偏差等,特征存储模式提供了一种集中化、标准化的特征管理机制,能够提升团队协作效率,确保模型训练和服务的一致性。文章结合纽约市出租车行程数据集和电商平台的预测案例,演示了Feast的特征创建、存储、检索和模型应用的完整流程。原创 2025-09-02 09:10:03 · 48 阅读 · 0 评论 -
27、机器学习中的数据处理与工作流管道设计
本文详细介绍了机器学习中的数据处理与工作流管道设计。内容涵盖数据处理中的平均延迟计算、批量预测请求处理,以及工作流管道的设计模式、解决方案和优势。文章还对不同管道工具如TFX、Kubeflow Pipelines和Cloud AI Platform Pipelines进行了对比,并提供了具体的代码示例和实施流程。最后总结了工作流管道的优势与权衡,并给出了实际应用中的建议。原创 2025-09-01 14:00:55 · 87 阅读 · 0 评论 -
26、机器学习数据处理与窗口推理模式解析
本文探讨了机器学习中的两个关键问题:匹配新架构的数据处理方法和窗口推理设计模式。针对架构变化,分析了联合架构、级联方法和静态插补等策略,并提供了选择合适方法的决策流程。对于窗口推理模式,介绍了在流数据环境下如何通过有状态的处理机制实现高效推理,对比了Apache Beam和流式SQL的实现方式,讨论了在高吞吐量场景下的优化方案。最后,总结了各类方法的适用场景,并给出了实际应用建议。原创 2025-08-31 16:29:03 · 35 阅读 · 0 评论 -
25、数据分割与模式设计:提升机器学习数据利用效率
本文深入探讨了在机器学习中如何高效利用数据,重点介绍了数据分割与桥接模式设计。内容涵盖按日期分割、其他分割方式、非结构化数据分割,以及解决新旧数据模式不一致的桥接方法。通过综合应用案例分析,展示了如何结合数据分割和桥接模式来提升模型性能,并提供了实际应用建议与未来展望。原创 2025-08-30 16:26:29 · 30 阅读 · 0 评论 -
24、机器学习中的可重复性设计模式
本文探讨了机器学习中的可重复性问题,并重点介绍了两种关键设计模式:Transform 和 Repeatable Splitting。Transform 模式通过明确捕获特征转换逻辑,解决训练与服务间偏差问题;Repeatable Splitting 模式则通过哈希技术确保数据分割的可重复性,避免信息泄漏。文章还介绍了它们在不同框架(如 BigQuery ML、TensorFlow)中的实现方式,并讨论了替代方案及未来发展趋势,帮助提升机器学习模型的稳定性和可靠性。原创 2025-08-29 16:15:10 · 46 阅读 · 0 评论 -
23、机器学习模型部署与预测的实用设计模式
本文探讨了机器学习模型部署与预测的实用设计模式,重点介绍了二阶段预测模式和关键预测设计模式。二阶段预测模式通过在设备端部署简单模型进行初步处理,再将关键数据发送至云端复杂模型进行验证,适用于设备端有一定计算能力的场景。关键预测设计模式通过客户端提供唯一键,确保输入输出的准确匹配,适用于处理大量输入输出的批量预测服务。文章还总结了设计模式的核心要点、应用决策流程及组合应用场景,并讨论了优化策略与未来发展趋势。原创 2025-08-28 13:57:59 · 38 阅读 · 0 评论 -
22、机器学习模型的连续评估与两阶段预测设计模式
本文探讨了机器学习模型在生产环境中的连续评估方法以及适用于边缘设备的两阶段预测设计模式。通过持续监控模型性能和数据分布变化,可以及时触发模型的重新训练以保持其有效性。同时,两阶段预测模式通过将轻量级模型部署在边缘设备、复杂模型部署在云端的方式,实现了性能与准确性的平衡。文章还介绍了相关实现代码、评估机制、硬件考量及多个实际应用场景。原创 2025-08-27 11:21:47 · 35 阅读 · 0 评论 -
21、机器学习模型部署与评估策略
本文深入探讨了机器学习模型部署与评估的多种策略,包括预测库的应用、批量服务设计模式以及持续模型评估设计模式。预测库适用于网络限制或预算敏感的场景,但存在维护和语言限制的挑战;批量服务通过分布式处理实现对大规模数据的异步推理,适用于延迟不敏感的任务;持续模型评估则通过监控模型性能,应对数据和概念漂移问题,确保模型在生产环境中的可靠性。文章还介绍了Lambda架构下批量与在线服务的协同机制、混淆矩阵的分析应用以及模型优化策略,为机器学习模型的高效部署与持续管理提供了全面指导。原创 2025-08-26 12:48:03 · 86 阅读 · 0 评论 -
20、无状态服务函数:实现高效机器学习预测服务
本文探讨了无状态服务函数设计模式在实现高效机器学习预测服务中的应用。通过将训练好的模型导出为无状态函数,并部署到支持 REST 的框架中,可以有效解决内存占用大、延迟高、语言兼容性差以及用户友好性不足等问题。文章结合 IMDb 文本分类模型和电商平台推荐模型的实际案例,展示了该模式在性能、可维护性和成本控制方面的显著优势,并提出了注意事项、最佳实践及未来发展趋势。原创 2025-08-25 13:00:47 · 32 阅读 · 0 评论 -
19、机器学习超参数调优与生产部署设计模式
本博文深入探讨了机器学习中的超参数调优与生产部署设计模式。内容涵盖超参数调优的基本原理与分类,介绍了keras-tuner、贝叶斯优化和遗传算法等主流调优方法,并详细分析了其优缺点与适用场景。此外,还讨论了生产部署中的关键设计模式,如无状态服务函数模式、批量服务模式、持续模型评估模式等,以确保模型在实际业务中的稳定性与弹性。博文还提供了超参数调优的注意事项及生产部署面临的挑战与应对策略,旨在帮助读者全面掌握从模型优化到实际部署的全流程技术要点。原创 2025-08-24 12:08:39 · 23 阅读 · 0 评论 -
18、深度学习中的分布式训练与超参数调优
本文深入探讨了深度学习中的分布式训练与超参数调优技术。内容涵盖分布式训练的核心策略,包括同步与异步训练的优缺点、模型与数据并行化的选择、以及专用硬件(如TPU)的应用。同时,详细分析了超参数调优方法,从手动调优、网格搜索和随机搜索到基于贝叶斯优化的keras-tuner,提出了在不同场景下的策略选择与优化建议。旨在帮助开发者高效训练复杂模型,提升模型性能与训练效率。原创 2025-08-23 12:58:54 · 46 阅读 · 0 评论 -
17、深度学习中的迁移学习与分布式训练策略
本文深入探讨了深度学习中的迁移学习和分布式训练策略。迁移学习部分详细介绍了特征提取和微调的定义、操作方法以及选择标准,并结合图像和文本任务分析了其应用特点。同时,介绍了TabNet在表格数据迁移学习中的新进展。分布式训练部分涵盖了数据并行与模型并行的解决方案,对比了同步训练与异步训练的性能、适用场景及实现方式,最后结合硬件资源、数据特性和任务需求提供了策略选择建议。原创 2025-08-22 11:08:28 · 46 阅读 · 0 评论 -
16、机器学习中的虚拟轮次与迁移学习
本文探讨了机器学习中两个重要的概念:虚拟轮次和迁移学习。虚拟轮次通过保持训练样本总数恒定来解决超参数调整时训练步数固定带来的问题,从而提高模型训练的灵活性和效果。迁移学习则是一种利用预训练模型在有限数据上快速构建高性能模型的技术,广泛应用于图像分类、自然语言处理等领域。文章详细介绍了迁移学习的工作原理、实现方法、优势以及应用场景,并提供了具体的代码示例和操作流程。最后总结了迁移学习的关键注意事项,并展望了其未来发展方向。原创 2025-08-21 13:45:09 · 46 阅读 · 0 评论 -
15、神经网络故障排除与优化策略
本文详细探讨了神经网络训练过程中的常见问题及优化策略。内容涵盖过拟合处理方法,检查点保存与恢复策略,提前停止的应用,正则化技术,模型微调技巧,以及如何重新定义 Epoch 以提高训练效率。同时,文章提供了在 Keras 和 PyTorch 中实现这些策略的具体代码示例,并通过流程图和操作步骤总结,帮助读者系统地掌握神经网络训练的故障排除与优化方法。原创 2025-08-20 12:18:01 · 52 阅读 · 0 评论 -
14、机器学习模型训练模式与有用过拟合策略
本文探讨了机器学习模型的典型训练循环和优化方法,重点分析了随机梯度下降(SGD)及其变体(如Adam)在现代框架中的应用。文章深入介绍了“有用过拟合”这一设计模式,指出在特定场景下(如输入空间可穷尽、无未见过数据)过拟合并非问题,而是精确模拟物理或动态系统的有效手段。此外,还讨论了训练设计模式,包括检查点、迁移学习、分布式策略和超参数调优,并结合实际应用场景提供了选择建议和操作指南。原创 2025-08-19 15:36:46 · 51 阅读 · 0 评论 -
13、处理不平衡数据集的策略与方法
本文探讨了处理不平衡数据集的多种策略与方法,包括合成少数类过采样技术(SMOTE)、数据重构与异常检测方法、下采样与类权重的结合应用、模型架构选择以及模型可解释性的重要性。通过具体示例和代码实现,展示了如何在分类、回归和聚类任务中有效应对数据不平衡问题,并提供了不同场景下的操作流程和注意事项,旨在帮助开发者构建性能优良且可解释性强的机器学习模型。原创 2025-08-18 10:25:15 · 53 阅读 · 0 评论 -
12、机器学习中的类别处理与数据集平衡策略
本博客探讨了机器学习中的两种重要设计模式:中立类设计模式和重平衡设计模式。中立类设计模式适用于处理人类专家意见分歧、客户满意度预测、改进嵌入和重塑问题等场景,通过引入中立类可以有效提升模型的准确率与可接受性。重平衡设计模式则专注于解决数据集不平衡问题,包括下采样、上采样、类权重调整、输出层偏置设置等方法,旨在提高模型在少数类上的性能,避免误导性评估结果。文章结合多个实际案例,如婴儿健康预测、欺诈检测等,展示了这些方法的实际应用效果,并提供了相关代码示例和评估指标的详细解释。原创 2025-08-17 13:21:18 · 50 阅读 · 0 评论 -
11、机器学习中的级联设计模式与中性类模式解析
本文深入解析了机器学习中的两种重要设计模式——级联设计模式与中性类模式。通过详细案例探讨了它们在不同场景下的应用、实现方法及权衡考虑。级联设计模式适用于处理复杂问题中不同类型行为差异较大的情况,通过分解问题并构建级联模型提高预测准确性;中性类模式则通过引入中性类别,增强模型在模糊或边缘情况下的处理能力,提升分类性能。文章还探讨了两种模式的综合应用,并分析了各自的优势与适用范围,为实际机器学习项目提供了实用指导。原创 2025-08-16 16:01:42 · 45 阅读 · 0 评论 -
10、机器学习中的集成方法与偏差 - 方差权衡
本文深入探讨了机器学习中的集成方法及其在偏差-方差权衡中的应用。文章详细介绍了装袋(Bagging)、提升(Boosting)和堆叠(Stacking)三种主流集成技术的原理、实现方式及其适用场景,并通过实际案例(如金融风险评估和房价预测)展示了它们的应用效果。此外,还讨论了集成方法的调优策略、与其他技术的结合以及面临的挑战,为读者提供了全面理解集成学习方法的视角,并指出了未来的发展方向。原创 2025-08-15 13:06:56 · 110 阅读 · 0 评论 -
9、机器学习中的设计模式:参数共享、多标签与集成
本文介绍了机器学习中三种重要的设计模式:参数共享、多标签分类和集成设计模式。参数共享通过在不同任务之间共享模型参数,提高模型的泛化能力;多标签设计模式用于处理一个样本可以属于多个标签的情况,使用sigmoid激活函数和二元交叉熵损失函数;集成设计模式通过组合多个模型的预测结果,提升整体预测的准确性和稳定性。文章详细探讨了这些设计模式的应用场景、实现方法、优缺点,并提供了Keras示例代码和实际应用建议。最后对不同设计模式进行了对比分析,并展望了未来的发展方向。原创 2025-08-14 11:32:59 · 35 阅读 · 0 评论 -
8、机器学习中的数据表示与问题表示设计模式
本文探讨了机器学习中数据表示与问题表示的设计模式,重点分析了如何通过不同的数据表示方法(如数值输入处理、分类特征工程、嵌入、特征交叉和多模态输入)提升模型性能。同时,深入讨论了问题表示的设计模式,包括重构、多标签、级联、集成等方法,特别强调了重构设计模式在回归与分类任务转换中的重要作用。文章还提供了在实际应用中如何选择合适设计模式的决策流程,并结合具体案例(如降雨量预测、婴儿体重预测等)分析了捕捉不确定性、改变目标、限制预测范围等场景的实现方式。最后,总结了数据需求与模型选择的关键考量,为构建高效、可解释的原创 2025-08-13 09:52:07 · 34 阅读 · 0 评论 -
7、机器学习中的多模态输入处理与数据表示
本博客探讨了机器学习中多模态输入处理与数据表示的方法和应用。通过结合表格数据、文本数据和图像数据,介绍了多种数据表示方式,如表格数据的分桶和编码、文本数据的嵌入和词袋方法、图像数据的像素值和瓷砖结构表示。同时,讨论了如何将不同模态的数据进行有效融合,以提升模型的性能和准确性。博客还总结了多模态输入处理的通用流程、面临的挑战以及未来的发展趋势,为实际应用提供了全面的指导。原创 2025-08-12 13:52:27 · 61 阅读 · 0 评论 -
6、机器学习中的数据处理与特征工程设计模式
本文详细介绍了机器学习中的数据处理与特征工程设计模式,包括数据仓库中的嵌入表示、特征交叉设计模式以及多模态输入设计模式。文章涵盖了如何将非结构化数据(如文本和图像)转化为嵌入表示并存储在数据仓库中,特征交叉的实现方法及其在分类变量和数值变量上的应用,以及多模态输入的处理流程和挑战。通过实际示例和模型性能对比,展示了这些设计模式如何提升模型预测能力并优化训练效率。此外,还讨论了特征交叉的权衡与替代方案,以及多模态输入的优势与复杂性。原创 2025-08-11 15:08:57 · 36 阅读 · 0 评论 -
5、机器学习中的哈希与嵌入技术
本文详细探讨了机器学习中哈希与嵌入技术的应用。在哈希部分,介绍了指纹哈希算法的选择及其在特征工程中的具体实现。嵌入技术则涵盖文本、图像等多模态数据的处理方法,包括使用 TensorFlow 和 Keras 的嵌入实现、自编码器和上下文语言模型等替代方案。文章还讨论了嵌入维度选择的权衡以及在推荐系统和图像分类中的实际应用,最后分析了嵌入技术的发展趋势与挑战。原创 2025-08-10 09:45:19 · 50 阅读 · 0 评论 -
4、数据表示与哈希特征设计模式解析
本文详细解析了在机器学习中如何处理数字数组、分类输入以及分类变量数组等不同类型的数据表示问题,并重点介绍了哈希特征设计模式的应用场景、实现步骤及其优缺点。通过合理使用这些数据表示方法,可以有效提升模型的性能和适应性,尤其适用于处理高基数、冷启动和词汇表不完整等挑战性问题。原创 2025-08-09 13:22:30 · 51 阅读 · 0 评论 -
3、机器学习中的常见挑战与数据表示策略
本博客探讨了机器学习中的常见挑战,包括可重复性、数据漂移、规模问题和多目标优化,并详细分析了应对这些挑战的数据表示策略。文章介绍了特征工程、线性缩放、非线性变换等方法,并通过实验展示了不同数据处理策略对模型性能的影响,旨在帮助读者提升机器学习模型的准确性和稳定性。原创 2025-08-08 09:11:33 · 42 阅读 · 0 评论 -
2、机器学习入门:概念、流程与挑战
本文介绍了机器学习的基本概念、主要类型(监督学习和无监督学习)以及其应用场景,详细探讨了机器学习的工作流程、数据预处理的重要性及挑战。文章还分析了构建机器学习系统时常见的数据质量和可重复性问题,并提出了相应的解决策略。此外,还描述了数据科学家、数据工程师、机器学习工程师等不同角色在机器学习项目中的职责和协作方式,强调了团队合作在应对挑战中的重要性。最后,文章展望了未来机器学习的发展趋势和可能的改进方向。原创 2025-08-07 10:05:27 · 33 阅读 · 0 评论 -
1、机器学习设计模式:原理与应用
本书《机器学习设计模式:原理与应用》旨在为数据科学家和机器学习工程师提供实用的设计模式,帮助解决机器学习工程中的常见问题。内容涵盖Transform模式、Keyed Predictions模式等,适用于企业级机器学习项目的开发与部署。书中提供多种框架(如Keras、scikit-learn、BigQuery ML)的代码示例,并探讨了设计模式在实际项目中的应用流程、权衡因素及最佳实践。适合具备基础机器学习知识的从业者进一步提升实战能力。原创 2025-08-06 10:29:34 · 43 阅读 · 0 评论
分享