自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 问答 (2)
  • 收藏
  • 关注

原创 让 OpenClaw 自动上传视频到 YouTube —— 完整实战教程

摘要 该项目展示了如何通过reSpeaker XVF3800麦克风阵列和OpenClaw机器人实现语音控制的YouTube视频自动上传功能。核心功能包括:1)通过语音指令"帮我把刚才的视频上传到YouTube"触发上传;2)利用YouTube Data API v3和OAuth 2.0实现长期授权;3)支持断点续传和大文件上传。项目开源了Python核心脚本,实现从语音输入到自动上传的完整工作流,结合reSpeaker的降噪和远场拾音能力,可在嘈杂环境中可靠运行。

2026-02-05 09:20:32 799

原创 OpenClaw Skill开发指南:语音输入,生成飞书互动式会议卡片(联动Seeed Studio reSpeaker XVF 3800)

本文介绍了一个基于OpenClaw Skill开发的语音交互系统,通过Seeed Studio ReSpeaker XVF3800麦克风阵列实现语音输入,自动生成飞书互动式会议卡片。项目结合Whisper语音识别模型,能够解析会议主题、时间、地点和参与者信息,并创建可交互的飞书卡片发送到指定群组。系统支持中英文语音指令,提供完整的硬件配置、软件安装和运行流程指南,展示了从语音输入到卡片生成的全过程解决方案。

2026-02-05 09:20:20 903

原创 手把手教你配置飞书 OpenClaw 机器人,打造企业级 AI 智能助手

本文介绍如何将OpenClaw机器人接入飞书平台,实现AI智能对话与自动化办公功能。提供两种部署方案:插件版(适合新手快速体验)和独立桥接版(适合生产环境)。详细步骤包括:创建飞书机器人应用、获取凭证信息、安装配置插件或桥接服务、设置权限与事件订阅等。还推荐使用reSpeaker XVF3800麦克风实现语音交互,并给出系统服务配置建议。通过OpenClaw与飞书的结合,可打造7×24小时智能办公助手解决方案。

2026-02-04 10:30:34 790

原创 OpenClaw本地部署指南 - Moonshot模型配置(完美解决Http 401报错,对话no output问题)

摘要:本文详细介绍了如何在Linux系统上部署OpenClaw并配置Moonshot模型实现语音交互。关键步骤包括安装Node.js环境、初始化OpenClaw配置、获取Moonshot API密钥,特别强调需将baseUrl修改为国内版"https://api.moonshot.cn/v1"以避免401错误。文章还分享了配置认证信息、测试模型调用等具体操作,并提供了常见问题的解决方案。通过ReSpeaker XVF3800麦克风阵列的降噪能力,可提升远场语音拾取效果,相关开发源码已在G

2026-02-04 10:02:40 529

原创 ⼿把⼿教你⽤ ESP32S3 + reSpeaker 打造属于你的云端 AI Xiaozhi语音助手

本文介绍了如何将Esp32S3与reSpeaker XVF3800麦克风阵列协同使用,并部署小智云计算大模型。主要内容包括:1)reSpeaker硬件固件准备,需刷入专用I2S固件;2)软件适配改动,包括I2C总线封装、硬件探测等;3)编译烧录流程,需配置引脚避免冲突;4)网络配置与激活步骤。项目通过reSpeaker的4麦克风阵列实现5米远场拾音,结合ESP32S3完成语音前端处理,最终实现云端大模型的语音交互功能。

2026-01-28 10:08:48 690

原创 Efficient 3D CNNs 适配嵌入式设备的视频分析算法分享

3D CNN虽能有效建模视频时空特征,但传统模型(如C3D、I3D)参数量巨大、计算成本高(动辄数十亿FLOPs),难以部署到算力有限的嵌入式设备(如ARM架构芯片)。而Köpüklü等人提出的极致轻量化设计:通过3D深度可分离卷积、通道混洗等技术,将模型参数量和计算量降低1-2个数量级(如3D ShuffleNetV2的FLOPs仅为ResNet-18的1/10),同时保持高精度;硬件友好性。

2025-08-04 11:08:48 1066

原创 RV1126B-RTSP推流与相机功能测试

在探讨 “How to build an AI camera” 时,明确其核心功能定位是关键。AI 相机的应用场景广泛,无论是智能安防中的实时监控,还是工业质检里的细节捕捉,亦或是家庭看护时的动态记录,RTSP 推流、拍照及录视频这三大功能都是核心支撑,直接决定了 AI 相机在不同场景下的实用价值。​当前,不少相关产品和项目在实际应用中面临显著痛点:RTSP 推流易出现不稳定、延迟过高的问题,在需要实时反馈的场景(如安防监控、工业流水线监控)中影响极大;

2025-07-24 15:01:11 1827 1

原创 基于 RV1126B 边缘计算:轻量化解密门店 / 展馆人流统计,附客流计数 + 停留分析实战方案(C++/Python)

在零售门店、展馆展厅等场景中,实时掌握进店人数与顾客停留时间,是优化运营策略的核心依据。基于 RV1126B 边缘计算平台,我们搭建了一套轻量化人流检测 Demo—— 通过摄像头采集画面并本地化处理,实现了精准的客流计数与停留分析。更关键的是,这套方案的技术逻辑与应用场景深度绑定,既保证了检测精度,又适配了实际运营需求。

2025-07-24 14:59:49 921

原创 从零开始制作自己的数据集(超详细,保姆级教学)

推荐阅读WIKI:内含超多AI Sensing相关资料,欢迎关注和讨论!将视觉检测算法真正部署于终端,将你的idea应用于生活。

2025-07-17 17:13:12 3767 1

原创 YOLO-从环境配置到ONNX模型输出(超详细,纯小白向)

Github源码库内含超多AI Sensing相关资料,欢迎关注和讨论!将视觉检测算法真正部署于终端,将你的idea应用于生活。

2025-07-09 11:25:27 2031

原创 ReCamera AI模型转换与量化全流程指南

reCamera平台支持PyTorch/ONNX/TFLite/Caffe/Paddle等主流框架的AI模型转换,其他框架的模型需要转换为 ONNX 格式。如需了解如何将其他深度学习架构的模型转换为 ONNX,请参阅官方 ONNX 网站:下面显示了在 reCamera 上部署 AI 模型的流程图。最终输出适配其边缘计算芯片的cvimodel格式。本文通过YOLO系列模型实例,详解从环境配置到混合精度量化的完整流程。ONNX 到 MLIR 的转换是模型转换过程中的关键中间步骤。

2025-07-08 16:07:35 1407

原创 用于tof技术测量光纤的实验装置框架

用于tof技术测量光纤的实验装置框架

2025-03-13 00:57:41 217

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除