机器学习
文章平均质量分 86
AwesomeDong
机器学习算法大白话爱好者
展开
-
十大机器学习算法(五)——无监督聚类算法 EM 聚类算法(以及GMM)
无监督聚类学习 EM主要流程:初始化参数 —>> 观察预期结果 —>> 存在误差?重新估计参数极大似然估计原创 2020-09-09 17:04:19 · 957 阅读 · 0 评论 -
十大机器学习算法(四)—— 关联算法(Apriori,FP-Growth)
关联算法基本概念支持度:每个商品(商品组合)在总体购物小票中的出现概率: Supporti=Countsales(i)Countall−salesSupport_i = \frac{Count_{sales(i)}}{Count_{all-sales}}Supporti=Countall−salesCountsales(i)置信度:当某一商品(商品组合) j 购买时,另一个其他商品(商品组合) i 会购买的概率: Confidence(i∣j)=Countsales(i,j)Coun原创 2020-09-08 17:25:46 · 3623 阅读 · 0 评论 -
十大机器学习算法(三)—— 无监督 聚类算法 KMeans
KMeansKMeans属于无监督(即无标签)聚类算法,在不知道数据没有具体的划分标准时,通过物以类聚的方法,将相似数据放在一起。一、源码流程(一)首先随机生成一堆数据 [x,y][x,y][x,y],尝试将这些数据进行聚类import randomimport matplotlib.pyplot as pltpoints_num = 100random_x = [random.randint(-100, 100) for _ in range(points_num)]random_y =原创 2020-09-03 22:40:09 · 2745 阅读 · 0 评论 -
十大机器学习算法(一)—— 朴素贝叶斯分类器(Navie Bayes)
朴素贝叶斯分类器(Navie Bayes)一、原理:贝叶斯原理(基于条件概率、全概率公式的贝叶斯公式)已知类别概率:∑i=1nCi=1 \sum^n_{i=1}{C_i = 1} i=1∑nCi=1已知属性概率:∑j=1mAj=1 \sum^m_{j=1}{A_j = 1} j=1∑mAj=1求:在 AjA_jAj 组合发生时,CiC_iCi的概率。P(Ci∣A1⋯Am)=P(A1⋯Am∣Ci)⋅P(Ci)P(A1⋯Am)=∑i=1nP(A1⋯Am⋅Ci) P(C_i|A_1 \cdo原创 2020-09-02 18:23:20 · 1338 阅读 · 0 评论 -
十大机器学习算法(二)—— 决策树与随机森林(学习笔记)
Github:AwesomeDone原创 2020-09-02 18:41:31 · 927 阅读 · 0 评论