给你一个整数 finalSum
。请你将它拆分成若干个 互不相同 的正偶数之和,且拆分出来的正偶数数目 最多 。
- 比方说,给你
finalSum = 12
,那么这些拆分是 符合要求 的(互不相同的正偶数且和为finalSum
):(2 + 10)
,(2 + 4 + 6)
和(4 + 8)
。它们中,(2 + 4 + 6)
包含最多数目的整数。注意finalSum
不能拆分成(2 + 2 + 4 + 4)
,因为拆分出来的整数必须互不相同。
请你返回一个整数数组,表示将整数拆分成 最多 数目的正偶数数组。如果没有办法将 finalSum
进行拆分,请你返回一个 空 数组。你可以按 任意 顺序返回这些整数。
输入:finalSum = 12 输出:[2,4,6] 解释:以下是一些符合要求的拆分:(2 + 10),
(2 + 4 + 6)
和(4 + 8) 。
(2 + 4 + 6) 为最多数目的整数,数目为 3 ,所以我们返回 [2,4,6] 。 [2,6,4] ,[6,2,4] 等等也都是可行的解。
如果 finalSum 是奇数,直接返回;
如果 finalSum 是偶数,可以按照 2,4,6,... 的顺序拆分 finalSum,直到无法拆出最后一个正整数为止。此时将 finalSum 加到最后一个数上即可。
class Solution {
public List<Long> maximumEvenSplit(long finalSum) {
List<Long> list = new ArrayList<>();
if (finalSum % 2 != 0) return list;
for(long i = 2; i <= finalSum; i+=2){
list.add(i);
finalSum -= i;
}
list.add(list.remove(list.size()-1)+finalSum);
return list;
}
}