724. Find Pivot Index
Given an array of integers nums
, write a method that returns the "pivot" index of this array.
We define the pivot index as the index where the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index.
If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.
Example 1:
Input: nums = [1, 7, 3, 6, 5, 6] Output: 3 Explanation: The sum of the numbers to the left of index 3 (nums[3] = 6) is equal to the sum of numbers to the right of index 3. Also, 3 is the first index where this occurs.
Example 2:
Input:nums = [1, 2, 3] Output: -1 Explanation: There is no index that satisfies the conditions in the problem statement.
Note:
- The length of
nums
will be in the range[0, 10000]
.- Each element
nums[i]
will be an integer in the range[-1000, 1000]
.
解题思路:
用lcount和rcount记录左侧和右侧的个数之和,遍历数组,每次遍历左侧lcount加nums[i]右侧rcount减nums[i+1],
lcount与rcount相等时返回下标
int pivotIndex(int* nums, int numsSize){
//数组没有元素时返回-1
if(numsSize==0)return -1;
int i=0;//工作游标
int lcount=0;//记录左侧各数之和
int rcount=0;//记录右侧各数之和
//统计第一个结点右侧各数之和
for(i=1;i<numsSize;i++){
rcount+=nums[i];
}
for(i=0;i<numsSize;i++){
//左右侧各数之和相等,则返回下标
if(lcount == rcount){
return i;
}
else{
//添加一个判断语句,即最后一个不是中心索引时直接跳出
if(i==numsSize-1)break;
//不相等时,左侧加上i的数右侧减掉i+1的数
lcount+=nums[i];
rcount-=nums[i+1];
}
}//while
return -1;//遍历完数组之后没找到
}
后记:
对第二个for循环终止条件i<numsSize-1的讨论:
- 如果终点设置的是numsSize,当执行完最后一个位置nums[numsSize-1]时,i++,此时rcount减掉的是一个不存在的下标指向numsSize,运行报错。下标溢出。所以要增加判断语句if(i==numsSize-1)break;
- 当数组元素都是>=0的实数时,最后一个元素nums[numsSize-1]一定不是中心索引,可用for(i=0;i<numsSize-1;i++)条件
- 当数组元素都是<=0的实数时,最后一个元素nums[numsSize-1]可能是中心索引,只能用for(i=0;i<numsSize;i++)条件
- 注意:题设任何一个 nums[i] 将会是一个范围在 [-1000, 1000]的整数,所以在此题中只能用for(i=0;i<numsSize;i++)条件。
LeetCode他人提交20ms(目前用时最少)解答:
int pivotIndex(int* nums, int numsSize) {
int i;
int left = 0;
int sum = 0;
if (numsSize < 3)
return -1;
for (i = 0; i < numsSize; i++)
{
sum = sum + nums[i];
}
for (i = 0; i < numsSize; i++)
{
if (left == sum - left - nums[i])
return i;
else
{
left = left + nums[i];
}
}
return -1;
}