Manacher(马拉车)

Manacher算法,又称马拉车算法,是由Manacher在1975年提出的,用于在O(n)时间内找到字符串中最长回文子串的方法。它通过巧妙的数据预处理和对称性减少搜索空间,从而达到高效求解。算法主要分为背景介绍、过程分析和代码实现三个部分。
摘要由CSDN通过智能技术生成

Manacher

一 、背景

1975年,Manacher发明了Manacher算法(中文名:马拉车算法),是一个可以在O(n)的复杂度中返回字符串s中最长回文子串长度的算法,十分巧妙。

让我们举个例子:
1.字符串:abbababa 最长回文子串:5(abbababa

2.字符串:abcbbabbc 最长回文子串:7(abcbbabbc

3.字符串:abccbaba 最长回文子串:6(abccbaba)

传统方法是,遍历每个字符,以该字符为中心向两边查找。时间复杂度为O(n^2),效率很差;
但是Manacher算法的时间复杂度可以达到O(n)!
在这里插入图片描述
下面让我们看看它是怎么做的的吧在这里插入图片描述

二、算法过程分析

回文分为奇回文(ababa)和偶回文(abba),这里比较难以处理,我们使用一个骚操作(划重点)。

我们将字符串首尾和每个字符间插入一个字符(注意:这个自符在串中并未出现)例如:’#’ s='abbadcacda’先转化成s_new=$#a#b#b#a#d#c#a#c#d#a#\0’(加粗的是边界)

这样原串中的偶回文(abba)与奇回文(adcacda),变成了(#a#d#d#a#)与(#a#d#c#a#c#d#a#)两个奇回文

定义数组p,用p[i]表示以i为中心的最长回文半径。再次举个例子
在这里插入图片描述
(图片是借鉴了他人的)

在这里插入图片描述

定义两个变量mx和id。mx就是以id为中心的最长回文右边界,也就是mx=id+p[id],随后我们需要mx做出它的最大贡献。

假设我们在求p[i](以i为中心的最长回文半径),如果i<mx(如上图),那么我们就用mx和j来更新到我们已知的可以更新的最大长度,代码如下:

if(i<mx)  
    p[i]=min(p[2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值