
金融数据分析
海人001
爱码仕
展开
-
python3线性回归
目录导包获得数据数据清洗第二种导入方法清除inf和nan训练线性回归方程总体相关参数交叉检验不同时期相关性导包import pandas as pdimport numpy as npfrom urllib.request import urlretrieve获得数据>>> vs_url = 'http://WWW...原创 2019-03-14 17:35:56 · 23314 阅读 · 1 评论 -
python实现最小二乘法回归模拟及绘图
目录准备工作回归计算模拟结果检测均方差检验有噪声数据回归多维回归准备工作首先通过linspace函数生成固定区间,然后定义一个函数,有三角函数和线性函数组成import numpy as npimport matplotlib.pyplot as pltdef f(x): return np.sin(x) + 0.5*xx = np.linsp...原创 2019-03-21 19:13:27 · 14364 阅读 · 0 评论 -
python3插值法
目录插值法简介python函数splreph函数参数splev一次样条函数插值小区间仔细观察三次精确插值小结插值法简介插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。样条插值在金融学...原创 2019-03-25 11:30:42 · 20720 阅读 · 0 评论 -
python3阿里巴巴股票数据统计
目录导包读取数据收盘价曲线对数收益率的向量化计算移动平均值计算移动历史标准差--移动历史波动率导包import numpy as npimport pandas as pdBackend TkAgg is interactive backend. Turning interactive mode on.import pandas_datareader.dat...原创 2019-03-13 16:40:35 · 10758 阅读 · 0 评论 -
python3凸优化
目录简介全局最优化局部优化有约束优化问题代码实现简介凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。在金融学和经济学中,凸优化起着重要作用,这方面的例子包括市场数据校准和期权定价模型,或者效用函数的优化。我们对下列函数fm进行这种优化#coding:UTF-8import numpy as npfrom...原创 2019-03-26 10:02:47 · 13656 阅读 · 0 评论