LeetCode 310. Minimum Height Trees

310. Minimum Height Trees

Medium

For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

    0
    |
    1
   / \
  2   3 

Output: [1]
Example 2 :

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

 0  1  2
  \ | /
    3
    |
    4
    |
    5 

Output: [3, 4]
Note:

According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

题意

给定一个无向图的边列表,该无向图有n个节点和n-1条边,符合树的定义,要在这个无向图可以组成的所有树中,求使得树根到最远的树叶距离最短的树根节点的列表(可能有2个树根同时满足最短)

思路

依次删除度为1的节点,直到最后只剩下2个及以下的节点。
注意Java List的浅拷贝(每次while循环rem0浅拷贝自rem1),如果直接赋值(rem0 = rem1)则rem1改变rem0也会改变。一般来说List的浅拷贝可以采用从构造方法构造

List<T> rem0 = new List<T>(rem1);

或者先清空再使用list的addAll方法

rem0.clear();
rem0.addAll(rem1);

代码

class Solution {
    public List<Integer> findMinHeightTrees(int n, int[][] edges) {
        List<Integer> ans = new ArrayList<Integer>();
        int i = 0;
        if (n <= 2) {
            for (i=0; i<n; ++i) {
                ans.add(i);
            }
            return ans;
        }
        ArrayList<ArrayList<Integer>> adj = new ArrayList<ArrayList<Integer>>(n);
        int[] degree = new int[n];
        ArrayList<Integer> rem0 = new ArrayList<Integer>(), rem1 = new ArrayList<Integer>();
        boolean[] vis = new boolean[n];
        int cnt = n;
        for (i=0; i<n; ++i) {
            adj.add(new ArrayList<Integer>());
        }
        for (int[] edge: edges) {
            adj.get(edge[0]).add(edge[1]);
            adj.get(edge[1]).add(edge[0]);
            ++degree[edge[0]];
            ++degree[edge[1]];
        }
        for (i=0; i<n; ++i) {
            if (degree[i] == 1) {
                rem0.add(i);
                vis[i] = true;
                --cnt;
            }
        }
        while (cnt > 2) {
            rem1.clear();
            for (int rem: rem0) {
                for (int node: adj.get(rem)) {
                    --degree[node];
                    if (!vis[node] && degree[node] == 1) {
                        rem1.add(node);
                        vis[node] = true;
                        --cnt;
                    }
                }
            }
            rem0.clear(); 
            rem0.addAll(rem1);
        }
        for (i=0; i<n; ++i) {
            if (!vis[i]) {
                ans.add(i);
            }
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值