推荐系统常用数据集整理

本文整理了推荐系统领域的四个经典数据集:MovieLens、CiteULike-a、Pinterest和Netflix,包括数据集来源、数据类型及评分方式,为推荐系统研究提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐系统常用数据集整理

1. MovieLens

  • dataset url: https://grouplens.org/datasets/movielens/
  • 描述: 推荐系统领域非常非常经典的数据集。MovieLens (https://movielens.org/) 是一家收集用户(user)对电影(movie)的评分并根据海量评分数据为用户提供电影推荐服务的网站。MovieLens推荐数据集是一个系列数据集,包含MovieLens 100K, MovieLens 1M, MovieLens 10M, MovieLens 20M等多个数据集,100K, 1M, 10M, 20M分别表示数据集包含的评分的条数。
  • Collaborative: user-movie评分关系,0.5分一档,最低为0.5分,最高为5分
  • Content: movie的标题和类别,已经user对movie的标签化评价

2. CiteULike-a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值