POJ 3624:CharmBracelet (0-1背包问题)

题目来源:http://poj.org/problem?id=3624

3624CharmBracelet

总时间限制: 1000ms      内存限制: 65536kB

Description

Bessie has gone to the mall's jewelry store and spies a charmbracelet. Of course, she'd like to fill it with the best charms possible fromthe N (1 ≤ N ≤ 3,402) available charms. Eachcharm i in the supplied list has a weight Wi (1≤ Wi ≤ 400), a 'desirability' factor Di (1≤ Di ≤ 100), and can be used at most once. Bessiecan only support a charm bracelet whose weight is no more than M (1≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charmswith their weights and desirability rating, deduce the maximum possible sum ofratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i withtwo space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charmdesirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

SampleOutput

23

-----------------------------------------------------

解题思路

0-1背包问题:动态规划

递推表达式:

DP[n][m]表示有n件物品,背包容量W为m时的最大化收益R

DP[n][m] = max(DP[n-1][m-w[n]] + r[n]), DP[n-1][m])

max里的第一项表示放入第n件物品,m表示不放入

由于每次递推只用到第n-1行和第n行,所以只需用一个数组存储一行

这是递推表达式变为:

DP[m] = max ( DP[m-w[n]]+ r[n], DP[m])

由于第n行的结果对第n-1行是覆盖写入,故循环时要从大往小了循环,否则会造成用第n行的结果更新第n行的结果,物理意义是将一个物品放入背包多次。

核心代码

memset(dp, 0, (m+1)*sizeof(int));				// 初始化
for (i=0; i<n; i++)								// 对于每一件物品
{
	for (j=m; j>=w[i]; j--)						// 倒着算保证每件物品只被放一次
	{
		dp[j] = max(dp[j-w[i]] + d[i], dp[j]);	// 降维的递推表达式
	}
}
cout << dp[m];

-----------------------------------------------------

代码

#include<fstream>
#include<iostream>
#include<cstring>
using namespace std;

int main()
{
#ifndef ONLINE_JUDGE
	ifstream fin("poj3624.txt");
	int n,m,i,j;
	fin >> n >> m;
	int* w = new int[n];
	int* d = new int[n];
	for (i=0; i<n; i++)
	{
		fin >> w[i] >> d[i];
	}
	fin.close();
	int *dp = new int[m+1];							// 动态规划一维数组
	// 递推式:dp[n][w] = max( dp[n-1][w-w[n]] + d[n], dp[n-1][w] )
	memset(dp, 0, (m+1)*sizeof(int));				// 初始化
	for (i=0; i<n; i++)								// 对于每一件物品
	{
		for (j=m; j>=w[i]; j--)						// 倒着算保证每件物品只被放一次
		{
			dp[j] = max(dp[j-w[i]] + d[i], dp[j]);	// 降维的递推表达式
		}
	}
	cout << dp[m];

	delete[] w;
	delete[] d;
	delete[] dp;
	return 0;
#endif
#ifdef ONLINE_JUDGE
	int n,m,i,j;
	cin >> n >> m;
	int* w = new int[n];
	int* d = new int[n];
	for (i=0; i<n; i++)
	{
		cin >> w[i] >> d[i];
	}
	int *dp = new int[m+1];							// 动态规划一维数组
	// 递推式:dp[n][w] = max( dp[n-1][w-w[n]] + d[n], dp[n-1][w] )
	memset(dp, 0, (m+1)*sizeof(int));				// 初始化
	for (i=0; i<n; i++)								// 对于每一件物品
	{
		for (j=m; j>=w[i]; j--)						// 倒着算保证每件物品只被放一次
		{
			dp[j] = max(dp[j-w[i]] + d[i], dp[j]);	// 降维的递推表达式
		}
	}
	cout << dp[m];

	delete[] w;
	delete[] d;
	delete[] dp;
	return 0;
#endif
}


阅读更多
个人分类: 基础算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭