哈希表的概念
用我自己的话来说,就是当给你一组数字在【0,100),再给你一个数字,我们要判断数字是否存在于数组中,我们的主要实现的方法就是定义一个有100元素的数组,然后我们根据给定的数字,把给定的一组数字当成数组的下标,当我们依次第一个数字放入数组中时下标为该数字本身,而这个下标对应的数字为1,依次往后,把给定的数字全部放入数组中,有些数字不在我们给定的范围之内我们就记为0,然后将所有的数字进行标记完毕之后,我们再将给定的数字在数组中找到对应的下标,当我们发现为1的时候就是存在的,要是等于0的话就是不存在的。类似于这种查询构造出来的方法就叫做哈希表。
哈希函数
哈希函数:哈希函数简单的来说就是将我们给定的数字转换为数组下标的方法。
常见的哈希函数:
直接定制法
取关键字的某个线性函数为散列地址:Hash(key)=A*key+B(在这里的key主要是说的数字);
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
适合查找比较小且连续的情况
面试题:找出一个字符串中第一个只出现一次的字符,要求:时间复杂度为O(N),空间复杂度O(1)除留与余数法
设哈希表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key)=key%p(p<=m),将关键码转换成哈希地址。
其他的方法我们不是经常用到,我在这里就不进行写入了。
字符串哈希算法
详细见链接!!!!
http://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html
/// @brief BKDR Hash Function
/// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得 名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)。
template<class T>
size_t BKDRHash(const T *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch; // 也可以乘以31、131、1313、13131、131313..
// 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;
// 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的,
// 我分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3);
// 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:
// 当乘数8-31位都为1或0时,需要1个时钟周期
// 当乘数16-31位都为1或0时,需要2个时钟周期
// 当乘数24-31位都为1或0时,需要3个时钟周期
// 否则,需要4个时钟周期
// 因此,虽然我没有实际测试,但是我依然认为二者效率上差别不大
}
return hash;
}
/// @brief SDBM Hash Function
/// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已。
template<class T>
size_t SDBMHash(const T *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
/// @brief RS Hash Function
/// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名。
template<class T>
size_t RSHash(const T *str)
{
register size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
/// @brief AP Hash Function
/// @detail 由Arash Partow发明的一种hash算法。
template<class T>
size_t APHash(const T *str)
{
register size_t hash = 0;
size_t ch;
for (long i = 0; ch = (size_t)*str++; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
}
}
return hash;
}
/// @brief JS Hash Function
/// 由Justin Sobel发明的一种hash算法。
template<class T>
size_t JSHash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}
/// @brief DEK Function
/// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名。
template<class T>
size_t DEKHash(const T* str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash = ((hash << 5) ^ (hash >> 27)) ^ ch;
}
return hash;
}
/// @brief FNV Hash Function
/// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现。
template<class T>
size_t FNVHash(const T* str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 2166136261;
while (size_t ch = (size_t)*str++)
{
hash *= 16777619;
hash ^= ch;
}
return hash;
}
/// @brief DJB Hash Function
/// @detail 由Daniel J. Bernstein教授发明的一种hash算法。
template<class T>
size_t DJBHash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 5381;
while (size_t ch = (size_t)*str++)
{
hash += (hash << 5) + ch;
}
return hash;
}
/// @brief DJB Hash Function 2
/// @detail 由Daniel J. Bernstein 发明的另一种hash算法。
template<class T>
size_t DJB2Hash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return 0;
register size_t hash = 5381;
while (size_t ch = (size_t)*str++)
{
hash = hash * 33 ^ ch;
}
return hash;
}
/// @brief PJW Hash Function
/// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法。
template<class T>
size_t PJWHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * 8;
static const size_t ThreeQuarters = (TotalBits * 3) / 4;
static const size_t OneEighth = TotalBits / 8;
static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);
register size_t hash = 0;
size_t magic = 0;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != 0)
{
hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}
/// @brief ELF Hash Function
/// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形。
template<class T>
size_t ELFHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * 8;
static const size_t ThreeQuarters = (TotalBits * 3) / 4;
static const size_t OneEighth = TotalBits / 8;
static const size_t HighBits = ((size_t)-1) << (TotalBits - OneEighth);
register size_t hash = 0;
size_t magic = 0;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != 0)
{
hash ^= (magic >> ThreeQuarters);
hash &= ~magic;
}
}
return hash;
在实现字符串的哈希算法中最常见的应该是MD5和SHA1
MD5算法:
MD5即Message-Digest Algorithm 5(信息-摘要算法5),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD5实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。
MD5算法具有以下特点:
1、压缩性:任意长度的数据,算出的MD5值长度都是固定的。
2、容易计算:从原数据计算出MD5值很容易。
3、抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
4、强抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。
MD5的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。
原理
对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
例子:我们有10G大小文件存在于服务器1,要是我们从服务器1传输到服务器2用的指令是scp指令;如何验证拷贝的文件和原文件是等价的,在网络传输中没有错误:那么我们做法就是针对服务器1算出MD5值,针对服务器2算出MD5值,要是算出的两个MD5的值相等就说明原来的字符串是相同的,拷贝的和原来的文件是相同的,也就证明了MD5的特点3;
注意:在linux下我们用md5sum来查看文件的MD5;
SHA1算法
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。 SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要,(但会有1x10 ^ 48分之一的机率出现相同的消息摘要,一般使用时忽略)。
哈希冲突
哈希冲突:当我们在给定两个数字或者多个数组我们计算出来的数组下标是相同的值,该现象称为哈希冲突或哈希碰撞。
解决哈希冲突的两种方法:
1、线性探测(闭散列):就是当我们给定的两个数组计算出来的数组下标是相同的值,如果哈希表未装满,说明在哈希表中还有空余的位置,这时我们就可以把未存入哈希表中的key存入到表中的”下一个”空位中去。
负载因子:就是元素当中的非空闲元素(填入表中的元素)占总体元素的比例;
2、哈希桶法(开散列):就是我们将所算出来的具有相同地址的数字归为同一个集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表接起来,各链表的头结点存储于哈希表中。