关于新款Mac电脑无法使用三指拖动的问题


一、系统偏好设置->辅助功能



二、在辅助功能界面找到 “鼠标与触控板”选项(如图)


三、点击触控板选项 (如图)


四、启用拖移,然后选择三指拖移 (如图)





### 使用四元数进行位移计算的方法及实现 #### 四元数的基本概念 四元数是一种扩展的复数形式,通常用来描述维空间中的旋转操作。相比于欧拉角,它能够有效避免万向节死锁问题[^3]。 #### 位移计算的核心原理 在维空间中,如果要通过四元数完成位移计算,则需结合平移和旋转的操作。单独使用四元数无法直接表示平移部分,因此常引入对偶四元数或者将四元数与其他工具(如齐次变换矩阵)联合使用[^5]。 以下是具体方法: 1. **定义初始状态** 假设存在一个初始位置 \( P_0 \),并有一个对应的单位四元数 \( q_0 = (w_0, x_0, y_0, z_0) \) 表示当前方向。 2. **目标位姿设定** 设定一个新的目标位置 \( P_t \) 和新的方向四元数 \( q_t \)。为了从 \( P_0 \) 到达 \( P_t \),需要计算两者之间的差值,并将其分解为旋转和平移两部分。 3. **旋转差异计算** 计算两个四元数间的相对旋转可以通过以下方式获得: \[ dq = q_t^{-1} * q_0 \] 这里 \( q_t^{-1} \) 是 \( q_t \) 的共轭四元数[^1]。 4. **插值处理** 对于连续运动的情况,可以采用球面线性插值(SLERP),即按照时间参数 \( t \in [0, 1] \) 插入中间状态: \[ q_{\text{interpolated}}(t) = SLERP(q_0, q_t, t) \] 5. **平移分量加入** 平移可以直接加到最终的位置坐标上。对于完整的刚体运动,可考虑使用齐次变换矩阵或将平移嵌入对偶四元数结构中。 #### Python 实现代码示例 下面是一个基于 `numpy` 库的简单实现例子,展示如何利用四元数执行基本的旋转与插值操作: ```python import numpy as np def quaternion_multiply(q1, q2): w1, x1, y1, z1 = q1 w2, x2, y2, z2 = q2 w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2 z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2 return np.array([w, x, y, z]) def slerp(q0, q1, t): cos_theta = np.dot(q0, q1) if cos_theta < 0: q1 = -q1 cos_theta = -cos_theta theta = np.arccos(np.clip(cos_theta, -1, 1)) sin_theta = np.sin(theta) if abs(sin_theta) < 1e-8: return (1-t)*np.array(q0)+t*np.array(q1) a = np.sin((1-t)*theta)/sin_theta b = np.sin(t*theta)/sin_theta return a*q0+b*q1 # Example usage q_start = np.array([1, 0, 0, 0]) # Initial orientation q_end = np.array([0.707, 0, 0.707, 0]) # Final orientation after rotation of pi/2 around Z-axis for i in range(11): # Interpolate over time steps from 0 to 1 with step size 0.1 t = i / 10 interpolated_q = slerp(q_start, q_end, t) print(f"At t={t}, the interpolated quaternion is {interpolated_q}") ``` 上述脚本展示了如何通过对两个给定四元数应用 SLERP 来生成一系列过渡姿态[^2]。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值