有上下界的网络流

1、无源汇有上下界可行流
构图方法: 对于每条边有一个上界容量up和一个下界容量low,我们让这条边的容量下界变为0,上界为up-low。可是这样做了的话流量就不守恒了,为了再次满足流量守恒,即每个节点”入流=出流”,我们增设一个超级源点st和一个超级终点sd。我们开设一个数组du[]来记录每个节点的流量情况。
du[i]=in[i](i节点所有入流下界之和)-out[i](i节点所有出流下界之和)。
当du[i]大于0的时候,st到i连一条流量为du[i]的边。
当du[i]小于0的时候,i到sd连一条流量为-du[i]的边。
最后对(st,sd)求一次最大流即可,当所有附加边全部满流时(即maxflow==所有du[]>0之和),有可行解。

#include "stdafx.h"
#include<vector>
#include<queue>
#include<cstdio>
using namespace std;

const int MAX_V = 10000;
const int INF = 1 << 30;
int n, m;
int w[MAX_V];
struct edge{
    int to, cap, rev;
};
vector<edge> G[MAX_V];
int level[MAX_V];       //图的层次标记
int iter[MAX_V];        //用于弧优化的当前弧

void add_edge(int from, int to, int cap)
{
    edge e1 = { to, cap, G[to].size() };
    edge e2 = { from, 0, G[from].size() };
    G[from].push_back(e1);
    G[to].push_back(e2);
}
//通过BFS计算图的层次
void bfs(int s)
{
    memset(level, -1, sizeof(level));
    queue<int> que;
    level[s] = 0;
    que.push(s);
    while (!que.empty())
    {
        int v = que.front();
        que.pop();
        for (int i = 0; i < G[v].size(); i++)
        {
            edge& e = G[v][i];
            if (e.cap>0 && level[e.to] < 0)
            {
                level[e.to] = level[v] + 1;
                que.push(e.to);
            }
        }
    }
}

//通过DFS寻找增广路
int dfs(int v, int t, int f)
{
    if (v == t)
        return f;
    for (int &i = iter[v]; i < G[v].size(); i++)
    {
        edge &e = G[v][i];
        if (e.cap>0 && level[v] < level[e.to])
        {
            int d = dfs(e.to, t, min(f, e.cap));
            if (d>0)
            {
                e.cap -= d;
                G[e.to][e.rev].cap += d;
                return d;
            }
        }
    }
    return 0;
}

int dinic(int s, int t)
{
    int flow = 0;
    for (;;)
    {
        bfs(s);
        if (level[t] < 0)
            return flow;
        memset(iter, 0, sizeof(iter));
        int f;
        while ((f = dfs(s, t, INF))>0)
        {
            flow += f;
        }
    }
}

int _tmain(int argc, _TCHAR* argv[])
{
    int a, b, low, up;
    int sumlow=0;
    scanf_s("%d%d", &n, &m);
    int s = 0, t = n + 1;
    for (int i = 0; i < m; i++)
    {
        scanf_s("%d%d%d%d", &a, &b, &low, &up);
        add_edge(a, b, up - low);   //(a,b)边新的容量为up-low
        w[b] += low;     //计算a、b顶点的总下界流
        w[a] -= low;
    }
    for (int i = 1; i <= n; i++)
    {
        if (w[i]>0)
        {
            sumlow += w[i];     //统计从超级源流出的下界流总和
            add_edge(s, i, w[i]); //从超级源向每个流入下界流总和大于0的边连接容量为下界流总和的通路
        }
        if (w[i] < 0)
            add_edge(i, t, -w[i]);//从每个流入下界流总和小于0(即流出下界流)的点向超级汇连一条通路,容量为下界流总和的相反数
    }
    int f = dinic(s, t);
    if (f == sumlow)     //求得的最大流等于从超级源流出的下界流,则这个最大流就是所要求的解,否则问题无可行解。
        printf_s("%dyes\n",f);
    else
        printf_s("%dno\n",f);
    return 0;
}

2、有源汇有上下界最大流
在无源汇有上下界最大流的构图基础上,从超级源st向源点s连接一条容量为INF的边,从汇点t向超级汇sd连接一条容量为INF的边。求从st到sd的最大流F’(注意,这里也要像1一样检验F’是否是可行解,如果F’没有可行解原问题也没有可行解),则原图的F=F’-所有su[]>0之和。

3、有源汇有上下界最小流
设原来的源汇为s, t, 附加源汇为S, T,
先像1那样构图,然后使用二分法判断最小流。
假设二分的流量是x,则添加边(t, s) 上界为x,下界为0的边,
然后按1中的方法求x是否是新图的无源汇可行流。
最后求得的最小的该x即为最终原图中的最小流。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值