【问题描述】
设计并实现最不经常使用(LFU)缓存的数据结构。它应该支持以下操作:get 和 put。
get(key) - 如果键存在于缓存中,则获取键的值(总是正数),否则返回 -1。
put(key, value) - 如果键不存在,请设置或插入值。当缓存达到其容量时,它应该在插入新项目之前,使最不经常使用的项目无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除。
进阶:
你是否可以在 O(1) 时间复杂度内执行两项操作?
示例:
LFUCache cache = new LFUCache( 2 /* capacity (缓存容量) */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 去除 key 2
cache.get(2); // 返回 -1 (未找到key 2)
cache.get(3); // 返回 3
cache.put(4, 4); // 去除 key 1
cache.get(1); // 返回 -1 (未找到 key 1)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lfu-cache
【解答思路】
1. 核心思想:先考虑访问次数,在访问次数相同的情况下,再考虑缓存的时间
- 每次访问一个已经存在的元素的时候:应该先把结点类从当前所属的访问次数双链表里删除,然后再添加到它「下一个访问次数」的双向链表的头部。
时间复杂度:O(1) 空间复杂度:O(N)
import java.util.HashMap;
import java.util.Map;
public class LFUCache {
/**
* key 就是题目中的 key
* value 是结点类
*/
private Map<Integer, ListNode> map;
/**
* 访问次数哈希表,使用 ListNode[] 也可以,不过要占用很多空间
*/
private Map<Integer, DoubleLinkedList> frequentMap;
/**
* 外部传入的容量大小
*/
private Integer capacity;
/**
* 全局最高访问次数,删除最少使用访问次数的结点时会用到(这个设计可能是冗余的)
*/
private Integer maxFrequent = 1;
public LFUCache(int capacity) {
map = new HashMap<>(capacity);
frequentMap = new HashMap<>();
this.capacity = capacity;
}
/**
* get 一次操作,访问次数就增加 1;
* 从原来的链表调整到访问次数更高的链表的表头
*
* @param key
* @return
*/
public int get(int key) {
// 测试测出来的,capacity 可能传 0
if (capacity == 0) {
return -1;
}
if (map.containsKey(key)) {
// 获得结点类
ListNode listNode = removeListNode(key);
// 挂接到新的访问次数的双向链表的头部
int frequent = listNode.frequent;
addListNode2Head(frequent, listNode);
return listNode.value;
} else {
return -1;
}
}
/**
* @param key
* @param value
*/
public void put(int key, int value) {
// 如果 key 存在,就更新访问次数 + 1,更新值
if (map.containsKey(key)) {
ListNode listNode = removeListNode(key);
// 更新 value
listNode.value = value;
int frequent = listNode.frequent;
addListNode2Head(frequent, listNode);
return;
}
// 如果 key 不存在
// 1、如果满了,先删除访问次数最小的的末尾结点,再删除 map 里对应的 key
if (map.size() == capacity) {
for (int i = 1; i <= maxFrequent; i++) {
if (frequentMap.containsKey(i) && frequentMap.get(i).count > 0) {
// 1、从双链表里删除结点
DoubleLinkedList doubleLinkedList = frequentMap.get(i);
ListNode removeNode = doubleLinkedList.removeTail();
// 2、删除 map 里对应的 key
map.remove(removeNode.key);
break;
}
}
}
// 2、再创建新结点放在访问次数为 1 的双向链表的前面
ListNode newListNode = new ListNode(key, value);
addListNode2Head(1, newListNode);
map.put(key, newListNode);
}
// 以下部分主要是结点类和双向链表的操作
/**
* 结点类,是双向链表的组成部分
*/
private class ListNode {
private int key;
private int value;
private int frequent = 1;
private ListNode pre;
private ListNode next;
public ListNode() {
}
public ListNode(int key, int value) {
this.key = key;
this.value = value;
}
}
/**
* 双向链表
*/
private class DoubleLinkedList {
/**
* 虚拟头结点,它无前驱结点
*/
private ListNode dummyHead;
/**
* 虚拟尾结点,它无后继结点
*/
private ListNode dummyTail;
/**
* 当前双向链表的有效结点数
*/
private int count;
public DoubleLinkedList() {
this.dummyHead = new ListNode(-1, -1);
this.dummyTail = new ListNode(-1, -1);
dummyHead.next = dummyTail;
dummyTail.pre = dummyHead;
count = 0;
}
/**
* 把一个结点类添加到双向链表的开头(头部是最新使用数据)
*
* @param addNode
*/
public void addNode2Head(ListNode addNode) {
ListNode oldHead = dummyHead.next;
// 两侧结点指向它
dummyHead.next = addNode;
oldHead.pre = addNode;
// 它的前驱和后继指向两侧结点
addNode.pre = dummyHead;
addNode.next = oldHead;
count++;
}
/**
* 把双向链表的末尾结点删除(尾部是最旧的数据,在缓存满的时候淘汰)
*
* @return
*/
public ListNode removeTail() {
ListNode oldTail = dummyTail.pre;
ListNode newTail = oldTail.pre;
// 两侧结点建立连接
newTail.next = dummyTail;
dummyTail.pre = newTail;
// 它的两个属性切断连接
oldTail.pre = null;
oldTail.next = null;
count--;
return oldTail;
}
}
/**
* 将原来访问次数的结点,从双向链表里脱离出来
*
* @param key
* @return
*/
private ListNode removeListNode(int key) {
// 获得结点类
ListNode deleteNode = map.get(key);
ListNode preNode = deleteNode.pre;
ListNode nextNode = deleteNode.next;
// 两侧结点建立连接
preNode.next = nextNode;
nextNode.pre = preNode;
// 删除去原来两侧结点的连接
deleteNode.pre = null;
deleteNode.next = null;
// 维护双链表结点数
frequentMap.get(deleteNode.frequent).count--;
// 访问次数加 1
deleteNode.frequent++;
maxFrequent = Math.max(maxFrequent, deleteNode.frequent);
return deleteNode;
}
/**
* 把结点放在对应访问次数的双向链表的头部
*
* @param frequent
* @param addNode
*/
private void addListNode2Head(int frequent, ListNode addNode) {
DoubleLinkedList doubleLinkedList;
// 如果不存在,就初始化
if (frequentMap.containsKey(frequent)) {
doubleLinkedList = frequentMap.get(frequent);
} else {
doubleLinkedList = new DoubleLinkedList();
}
// 添加到 DoubleLinkedList 的表头
doubleLinkedList.addNode2Head(addNode);
frequentMap.put(frequent, doubleLinkedList);
}
}
作者:liweiwei1419
链接:https://leetcode-cn.com/problems/lfu-cache/solution/ha-xi-biao-shuang-xiang-lian-biao-java-by-liweiwei/
测试用例
public class LFUCache {
public static void main(String[] args) {
LFUCache cache = new LFUCache(3);
cache.put(1, 1);
cache.put(2, 2);
cache.put(3, 3);
System.out.println(cache.map.keySet());
cache.put(4, 4);
System.out.println(cache.map.keySet());
int res1 = cache.get(4);
System.out.println(res1);
int res2 = cache.get(3);
System.out.println(res2);
int res3 = cache.get(2);
System.out.println(res3);
int res4 = cache.get(1);
System.out.println(res4);
cache.put(5, 5);
int res5 = cache.get(1);
System.out.println(res5);
int res6 = cache.get(2);
System.out.println(res6);
int res7 = cache.get(3);
System.out.println(res7);
int res8 = cache.get(4);
System.out.println(res8);
int res9 = cache.get(5);
System.out.println(res9);
}
}
【总结】
1.LFU (Least Frequently Used)缓存机制(看访问次数)
-在缓存满的时候,删除缓存里使用次数最少的元素,然后在缓存中放入新元素;
-数据的访问次数很重要,访问次数越多,就越不容易被删除;
-根据题意,「当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除」,即在「访问次数」相同的情况下,按照时间顺序,先删除在缓存里时间最久的数据
2.编码总结
3.功力仍未够深厚 只能理解其思想