[Leedcode][JAVA][第460题][LFU]

239 篇文章 1 订阅
【问题描述】
设计并实现最不经常使用(LFU)缓存的数据结构。它应该支持以下操作:get 和 put。

get(key) - 如果键存在于缓存中,则获取键的值(总是正数),否则返回 -1。
put(key, value) - 如果键不存在,请设置或插入值。当缓存达到其容量时,它应该在插入新项目之前,使最不经常使用的项目无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除。

进阶:
你是否可以在 O(1) 时间复杂度内执行两项操作?

示例:

LFUCache cache = new LFUCache( 2 /* capacity (缓存容量) */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回 1
cache.put(3, 3);    // 去除 key 2
cache.get(2);       // 返回 -1 (未找到key 2)
cache.get(3);       // 返回 3
cache.put(4, 4);    // 去除 key 1
cache.get(1);       // 返回 -1 (未找到 key 1)
cache.get(3);       // 返回 3
cache.get(4);       // 返回 4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lfu-cache
【解答思路】
1. 核心思想:先考虑访问次数,在访问次数相同的情况下,再考虑缓存的时间


  • 每次访问一个已经存在的元素的时候:应该先把结点类从当前所属的访问次数双链表里删除,然后再添加到它「下一个访问次数」的双向链表的头部。
    weiwei

时间复杂度:O(1) 空间复杂度:O(N)

import java.util.HashMap;
import java.util.Map;

public class LFUCache {

    /**
     * key 就是题目中的 key
     * value 是结点类
     */
    private Map<Integer, ListNode> map;

    /**
     * 访问次数哈希表,使用 ListNode[] 也可以,不过要占用很多空间
     */
    private Map<Integer, DoubleLinkedList> frequentMap;

    /**
     * 外部传入的容量大小
     */
    private Integer capacity;

    /**
     * 全局最高访问次数,删除最少使用访问次数的结点时会用到(这个设计可能是冗余的)
     */
    private Integer maxFrequent = 1;

    public LFUCache(int capacity) {
        map = new HashMap<>(capacity);
        frequentMap = new HashMap<>();
        this.capacity = capacity;
    }

    /**
     * get 一次操作,访问次数就增加 1;
     * 从原来的链表调整到访问次数更高的链表的表头
     *
     * @param key
     * @return
     */
    public int get(int key) {
        // 测试测出来的,capacity 可能传 0
        if (capacity == 0) {
            return -1;
        }

        if (map.containsKey(key)) {
            // 获得结点类
            ListNode listNode = removeListNode(key);

            // 挂接到新的访问次数的双向链表的头部
            int frequent = listNode.frequent;
            addListNode2Head(frequent, listNode);
            return listNode.value;
        } else {
            return -1;
        }
    }

    /**
     * @param key
     * @param value
     */
    public void put(int key, int value) {
        // 如果 key 存在,就更新访问次数 + 1,更新值
        if (map.containsKey(key)) {
            ListNode listNode = removeListNode(key);

            // 更新 value
            listNode.value = value;
            int frequent = listNode.frequent;
            addListNode2Head(frequent, listNode);
            return;
        }

        // 如果 key 不存在
        // 1、如果满了,先删除访问次数最小的的末尾结点,再删除 map 里对应的 key
        if (map.size() == capacity) {
            for (int i = 1; i <= maxFrequent; i++) {
                if (frequentMap.containsKey(i) && frequentMap.get(i).count > 0) {
                    // 1、从双链表里删除结点
                    DoubleLinkedList doubleLinkedList = frequentMap.get(i);
                    ListNode removeNode = doubleLinkedList.removeTail();

                    // 2、删除 map 里对应的 key
                    map.remove(removeNode.key);
                    break;
                }
            }
        }

        // 2、再创建新结点放在访问次数为 1 的双向链表的前面
        ListNode newListNode = new ListNode(key, value);
        addListNode2Head(1, newListNode);
        map.put(key, newListNode);
    }

    // 以下部分主要是结点类和双向链表的操作

    /**
     * 结点类,是双向链表的组成部分
     */
    private class ListNode {
        private int key;
        private int value;
        private int frequent = 1;
        private ListNode pre;
        private ListNode next;

        public ListNode() {

        }

        public ListNode(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    /**
     * 双向链表
     */
    private class DoubleLinkedList {
        /**
         * 虚拟头结点,它无前驱结点
         */
        private ListNode dummyHead;
        /**
         * 虚拟尾结点,它无后继结点
         */
        private ListNode dummyTail;

        /**
         * 当前双向链表的有效结点数
         */
        private int count;

        public DoubleLinkedList() {
            this.dummyHead = new ListNode(-1, -1);
            this.dummyTail = new ListNode(-1, -1);

            dummyHead.next = dummyTail;
            dummyTail.pre = dummyHead;
            count = 0;
        }

        /**
         * 把一个结点类添加到双向链表的开头(头部是最新使用数据)
         *
         * @param addNode
         */
        public void addNode2Head(ListNode addNode) {
            ListNode oldHead = dummyHead.next;
            // 两侧结点指向它
            dummyHead.next = addNode;
            oldHead.pre = addNode;
            // 它的前驱和后继指向两侧结点
            addNode.pre = dummyHead;
            addNode.next = oldHead;
            count++;
        }

        /**
         * 把双向链表的末尾结点删除(尾部是最旧的数据,在缓存满的时候淘汰)
         *
         * @return
         */
        public ListNode removeTail() {
            ListNode oldTail = dummyTail.pre;
            ListNode newTail = oldTail.pre;

            // 两侧结点建立连接
            newTail.next = dummyTail;
            dummyTail.pre = newTail;

            // 它的两个属性切断连接
            oldTail.pre = null;
            oldTail.next = null;
            count--;
            return oldTail;
        }
    }


    /**
     * 将原来访问次数的结点,从双向链表里脱离出来
     *
     * @param key
     * @return
     */
    private ListNode removeListNode(int key) {
        // 获得结点类
        ListNode deleteNode = map.get(key);

        ListNode preNode = deleteNode.pre;
        ListNode nextNode = deleteNode.next;
        // 两侧结点建立连接
        preNode.next = nextNode;
        nextNode.pre = preNode;
        // 删除去原来两侧结点的连接
        deleteNode.pre = null;
        deleteNode.next = null;

        // 维护双链表结点数
        frequentMap.get(deleteNode.frequent).count--;
        // 访问次数加 1
        deleteNode.frequent++;
        maxFrequent = Math.max(maxFrequent, deleteNode.frequent);

        return deleteNode;
    }


    /**
     * 把结点放在对应访问次数的双向链表的头部
     *
     * @param frequent
     * @param addNode
     */
    private void addListNode2Head(int frequent, ListNode addNode) {
        DoubleLinkedList doubleLinkedList;

        // 如果不存在,就初始化
        if (frequentMap.containsKey(frequent)) {
            doubleLinkedList = frequentMap.get(frequent);
        } else {
            doubleLinkedList = new DoubleLinkedList();
        }

        // 添加到 DoubleLinkedList 的表头
        doubleLinkedList.addNode2Head(addNode);
        frequentMap.put(frequent, doubleLinkedList);
    }
}

作者:liweiwei1419
链接:https://leetcode-cn.com/problems/lfu-cache/solution/ha-xi-biao-shuang-xiang-lian-biao-java-by-liweiwei/


测试用例

public class LFUCache {

    public static void main(String[] args) {
        LFUCache cache = new LFUCache(3);

        cache.put(1, 1);
        cache.put(2, 2);
        cache.put(3, 3);
        System.out.println(cache.map.keySet());

        cache.put(4, 4);
        System.out.println(cache.map.keySet());

        int res1 = cache.get(4);
        System.out.println(res1);

        int res2 = cache.get(3);
        System.out.println(res2);

        int res3 = cache.get(2);
        System.out.println(res3);

        int res4 = cache.get(1);
        System.out.println(res4);

        cache.put(5, 5);

        int res5 = cache.get(1);
        System.out.println(res5);

        int res6 = cache.get(2);
        System.out.println(res6);

        int res7 = cache.get(3);
        System.out.println(res7);

        int res8 = cache.get(4);
        System.out.println(res8);

        int res9 = cache.get(5);
        System.out.println(res9);
    }
}


【总结】

1.LFU (Least Frequently Used)缓存机制(看访问次数)
-在缓存满的时候,删除缓存里使用次数最少的元素,然后在缓存中放入新元素;
-数据的访问次数很重要,访问次数越多,就越不容易被删除;
-根据题意,「当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除」,即在「访问次数」相同的情况下,按照时间顺序,先删除在缓存里时间最久的数据

2.编码总结
image.png

3.功力仍未够深厚 只能理解其思想

文章转载链接: https://leetcode-cn.com/problems/lfu-cache/solution/ha-xi-biao-shuang-xiang-lian-biao-java-by-liweiwei/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值