python+opencv+haarcascade实现实时人脸识别

本文详细介绍了如何利用Python和OpenCV库进行实时人脸识别。首先,讲解了所需的库和环境设置,接着测试了OpenCV的运行情况。重点讨论了人脸识别的基本原理,特别是通过调用`detectFaceInImage`函数,结合OpenCV自带的Haar级联分类器(如`haarcascade_frontalface_default.xml`等)进行人脸检测。然后,实现了从摄像头捕获图像并进行实时人脸检测的功能。此外,还涉及了人脸数据采集和实时人脸识别的步骤。如需帮助,可私信作者。
摘要由CSDN通过智能技术生成

一:准备阶段

需要准备的库和python解释器

二:测试cv能否运行

# 导入cv
import cv2 as cv
# 读取图片,这里最好用文件的绝对路径,否则容易报错。注意用‘/’或者‘\\’代替‘\'
img = cv.imread('*:\\****\\****\\****\\****.jpg')
cv.imshow('read_img',img)
cv.waitKey(0)
cv.destroyAllWindos()


三:人脸识别的基本原理


        调用“detectFaceInImage”函数。 指定OpenCV使用的人脸分类器(Face Classifier)。比如,OpenCV自带了一些用于正面脸的分类器,也有一些用于侧面脸的,还有眼睛检测,鼻检测,嘴检测,全身检测等等。你实际上可以任意把其它的分类检测器用于此函数,甚至创造你自己定制的分类检测器对于正面人脸检测,选取这些OpenCV自带的haar级联分类器,在实现之前需要将人脸进行灰度转化 gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

  • “haarcascade_frontalface_default.xml”
  • “haarcascade_frontalface_alt.xml”
  • “haarcascade
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大飞178

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值