根据n和m的关系,考虑以下几种情况:
(1)当 n = 1 时,不论m的值为多少(m > 0 ),只有一种划分即 { 1 };
(2) 当 m = 1 时,不论n的值为多少,只有一种划分即 n 个 1,{ 1, 1, 1, ..., 1 };
(3) 当 n = m 时,根据划分中是否包含 n,可以分为两种情况:
(a). 划分中包含n的情况,只有一个即 { n };
(b). 划分中不包含n的情况,这时划分中最大的数字也一定比 n 小,即 n 的所有 ( n - 1 ) 划分。
因此 f(n, n) = 1 + f(n, n-1);
(4) 当 n < m 时,由于划分中不可能出现负数,因此就相当于 f(n, n);
(5) 但 n > m 时,根据划分中是否包含最大值 m,可以分为两种情况:
(a). 划分中包含 m 的情况,即 { m, { x1, x2, ..., xi } }, 其中 { x1, x2, ..., xi } 的和为 n - m,可能再次出现 m,因此是(n - m)的 m 划分,因此这种划分
个数为 f(n-m, m);
(b). 划分中不包含 m 的情况,则划分中所有值都比 m 小,即 n 的 ( m - 1 ) 划分,个数为 f(n, m - 1);
因此 f(n, m) = f(n - m, m) + f(n, m - 1);
package com;
import java.util.Scanner;
/**
* @Auther: 大哥的叔
* @Date: 2019/8/30 13:29
* @Description:
*/
public class Main {
static int[] a = new int[100];
public static void main (String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
while (in.hasNextInt()) {
int n = in.nextInt();
int count = q(n, n, 0);
System.out.println("共有" + count + "种划分方式");
}
}
public static int q(int n, int m, int i) {
if (n < m) {
return q(n, n, i);
}
a[i] = m;
if (n == 0 || m == 0) {
//打印下标从0到i
printP(i);
return 0;
}
if (n == 1 || m == 1) {
if (n == 1) {
//打印下标从0到i
printP(i);
} else q(n - 1, 1, i + 1);
return 1;
}
if (n == m) {
//打印下标从0到i
printP(i);
return 1 + q(n, n - 1, i);
}
return q(n - m, m, i + 1) + q(n, m - 1, i);
}
public static void printP (int i) {
System.out.print("{");
for (int j = 0; j <= i; j++) {
if (j == i) System.out.print(a[j]);
else System.out.print(a[j] + "+");
}
System.out.println("};");
}
}