整数划分问题

 根据n和m的关系,考虑以下几种情况: 

       (1)当 n = 1 时,不论m的值为多少(m > 0 ),只有一种划分即 { 1 };

        (2)  当 m = 1 时,不论n的值为多少,只有一种划分即 n 个 1,{ 1, 1, 1, ..., 1 };

        (3)  当 n = m 时,根据划分中是否包含 n,可以分为两种情况:

              (a). 划分中包含n的情况,只有一个即 { n };

              (b). 划分中不包含n的情况,这时划分中最大的数字也一定比 n 小,即 n 的所有 ( n - 1 ) 划分。

              因此 f(n, n) = 1 + f(n, n-1);

        (4) 当 n < m 时,由于划分中不可能出现负数,因此就相当于 f(n, n);

        (5) 但 n > m 时,根据划分中是否包含最大值 m,可以分为两种情况:

               (a). 划分中包含 m 的情况,即 { m, { x1, x2, ..., xi } }, 其中 { x1, x2, ..., xi } 的和为 n - m,可能再次出现 m,因此是(n - m)的 m 划分,因此这种划分

                     个数为 f(n-m, m);

               (b). 划分中不包含 m 的情况,则划分中所有值都比 m 小,即 n 的 ( m - 1 ) 划分,个数为 f(n, m - 1);

              因此 f(n, m) = f(n - m, m) + f(n, m - 1);

package com;

import java.util.Scanner;

/**
 * @Auther: 大哥的叔
 * @Date: 2019/8/30 13:29
 * @Description:
 */
public class Main {
    static int[] a = new int[100];

    public static void main (String[] args) {
        // TODO Auto-generated method stub
        Scanner in = new Scanner(System.in);
        while (in.hasNextInt()) {
            int n = in.nextInt();
            int count = q(n, n, 0);
            System.out.println("共有" + count + "种划分方式");
        }
    }

    public static int q(int n, int m, int i) {
        if (n < m) {
            return q(n, n, i);
        }
        a[i] = m;
        if (n == 0 || m == 0) {
            //打印下标从0到i
            printP(i);
            return 0;
        }
        if (n == 1 || m == 1) {
            if (n == 1) {
                //打印下标从0到i
                printP(i);
            } else q(n - 1, 1, i + 1);
            return 1;
        }
        if (n == m) {
            //打印下标从0到i
            printP(i);
            return 1 + q(n, n - 1, i);
        }

        return q(n - m, m, i + 1) + q(n, m - 1, i);
    }

    public static void printP (int i) {
        System.out.print("{");
        for (int j = 0; j <= i; j++) {
            if (j == i) System.out.print(a[j]);
            else System.out.print(a[j] + "+");
        }
        System.out.println("};");
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值