C - 3 Steps
Time limit : 2sec / Memory limit : 256MB
Score : 500 points
Problem Statement
Rng has a connected undirected graph with N vertices. Currently, there are M edges in the graph, and the i-th edge connects Vertices Ai and Bi.
Rng will add new edges to the graph by repeating the following operation:
Operation: Choose u and v (u≠v) such that Vertex v can be reached by traversing exactly three edges from Vertex u, and add an edge connecting Vertices u and v. It is not allowed to add an edge if there is already an edge connecting Vertices u and v.
Find the maximum possible number of edges that can be added.
Constraints
2≤N≤105
1≤M≤105
1≤Ai,Bi≤N
The graph has no self-loops or multiple edges.
The graph is connected.
Input
Input is given from Standard Input in the following format:
N M
A1 B1
A2 B2
:
AM BM
Output
Find the maximum possible number of edges that can be added.
Sample Input 1
Copy
6 5
1 2
2 3
3 4
4 5
5 6
Sample Output 1
Copy
4
If we add edges as shown below, four edges can be added, and no more.
Sample Input 2
Copy
5 5
1 2
2 3
3 1
5 4
5 1
Sample Output 2
Copy
5
Five edges can be added, for example, as follows:
Add an edge connecting Vertex 5 and Vertex 3.
Add an edge connecting Vertex 5 and Vertex 2.
Add an edge connecting Vertex 4 and Vertex 1.
Add an edge connecting Vertex 4 and Vertex 2.
Add an edge connecting Vertex 4 and Vertex 3.
解析:判断是否是二分图,用深搜遍历,二分图的判断是用染色法,从而得出相应的答案;
代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int maxn = 1e5 + 5;
vector<int> list[maxn];
int vis[maxn];
int lose=0;
void bfs(int ne,int be,int re)
{
if(!lose)
{
if(vis[ne]==-1)
vis[ne]=re;
else
if(vis[ne]!=re)
{
lose=1;
return;
}
else
return;
for(int i=0;i<list[ne].size();i++)
{
if(list[ne][i]!=be)
bfs(list[ne][i],ne,!re);
}
}
}
int main()
{
long long m,n;
scanf("%lld%lld",&m,&n);
for(int i=0;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
list[x].push_back(y);
list[y].push_back(x);
}
memset(vis,-1,sizeof(vis));
bfs(1,0,1);
long long q=0,p=0;
for(int i=1;i<=m;i++)
{
if(vis[i]==1)
q++;
else
p++;
}
if(lose)
printf("%lld\n",m*(m-1)/2-n);
else
printf("%lld\n",q*p-n);
return 0;
}