Hadoop运行任务时一直卡在: INFO mapreduce.Job: Running job

本文记录了解决Hadoop和Hive复杂查询卡住的问题,通过调整YARN的内存配置最终使问题得以解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  今天,一大清早同事就让我帮他解决Hive的问题:他在Hive中执行简单的查询(直接从hive查询数据,没有MR过程)能很快的得到结果,但是执行复杂的查询时,就一直卡着不动.我连到服务器上试了一下,跟他遇到的问题一样,问题处在哪里呢?既然简单的查询能出结果,复杂查询需要MR计算,但是却卡住了,那估计是Hadoop的问题.

  于是,我在Hadoop跑一个简单的WountCound程序试试,结果跟Hive中遇到的情况一样:

   

    然后就一直卡在这个界面,很久都没有结果.

 最先想到的是:配置可能有点问题.于是我把配置检查了一遍,发现配置没错.于是,我又去检查Yarn和HDFS的启动日志,也没有发现ERROR.接着,我查看每个任务运行时的Container日志,也没有Error.真是见鬼了!

 在我查看各种日志和配置的时候,我同事在Docker中,将集群上的配置Copy过去,试了一遍,能正常运行!这...

 然后,我各种百度,google,在百度出来的各种方法我都试了一遍,仍然没有解决问题!于是,我同事说,是不是安装的时候有些包损坏了.于是,他又重新装了一边Hadoop,还是使用原来的配置,可问题依旧!

 此时,都已经搞了一直整天了,还有一个小时就要下班了!大哭于是,我在Google中看了几篇文章,基本上上面所说的方法我都试了.终于,在Stackover上有一个哥们也遇到了同样的问题,有人帮他解决了,里面链接到了一个网站:http://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/  ,我打开一看,说的是要设置yarn里面关于内存和虚拟内存的配置项.我以前没配置这几项,也能正常运行,感觉是这个问题的可能性不大啊!但是,既然这么多方法都不管用,这能试一试了. 

  于是,我在yarn-site.xml中加了:

      

<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>20480</value>
</property>
<property>
   <name>yarn.scheduler.minimum-allocation-mb</name>
   <value>2048</value>
</property>
<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>2.1</value>
</property>
   再次运行,居然成功了!

 然后运行Hive,也能正确的运行了!

    出现此故障的原因应该是,在每个Docker分配的内存和CPU资源太少,不能满足Hadoop和Hive运行所需的默认资源需求。特此备忘!


[root@hadoop01 jars]# hadoop jar film.jar CleanDriver /film/input /film/outputs/cleandata 25/03/29 14:28:19 INFO client.RMProxy: Connecting to ResourceManager at hadoop01/192.168.20.20:8032 25/03/29 14:28:19 INFO input.FileInputFormat: Total input paths to process : 1 25/03/29 14:28:19 INFO mapreduce.JobSubmitter: number of splits:1 25/03/29 14:28:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1743079842141_0006 25/03/29 14:28:20 INFO impl.YarnClientImpl: Submitted application application_1743079842141_0006 25/03/29 14:28:20 INFO mapreduce.Job: The url to track the job: http://hadoop01:8088/proxy/application_1743079842141_0006/ 25/03/29 14:28:20 INFO mapreduce.Job: Running job: job_1743079842141_0006 25/03/29 14:28:26 INFO mapreduce.Job: Job job_1743079842141_0006 running in uber mode : false 25/03/29 14:28:26 INFO mapreduce.Job: map 0% reduce 0% 25/03/29 14:28:31 INFO mapreduce.Job: map 100% reduce 0% 25/03/29 14:28:36 INFO mapreduce.Job: map 100% reduce 100% 25/03/29 14:28:36 INFO mapreduce.Job: Job job_1743079842141_0006 completed successfully 25/03/29 14:28:36 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=6 FILE: Number of bytes written=245465 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=8669 HDFS: Number of bytes written=0 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2452 Total time spent by all reduces in occupied slots (ms)=2374 Total time spent by all map tasks (ms)=2452 Total time spent by all reduce tasks (ms)=2374 Total vcore-milliseconds taken by all map tasks=2452 Total vcore-milliseconds taken by all reduce tasks=2374 Total megabyte-milliseconds taken by all map tasks=251084
03-30
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值