浙大陈越老师主编《数据结构》(第2版)学习笔记
目录
汉诺塔(Tower of Hanoi)问题
传说印度的主神梵天做了一个汉诺塔,它是在一个黄色铜板上插3根宝石针,其中一根针上从上到下按从小到大的顺序串上了64个金片。梵天要求僧侣们轮流把金片在3根针之间移来移去,规定每次只能移动一片,且不许将大金片压在小金片上,并说如果这64片金片全部移至另一根针上时,世界就会在一声霹雳之中毁灭。
从递归的角度考虑,问题将变简单。
要想将这n片金片从第一根针移动到第三根针,一定会移成图2.8(b)所示的情况,即第一根针(起始针)上只剩第n片金片,其余n-1片移动到第二根针(过渡针)。
那么将n片金片从第一根针移动到第三根针这个问题就分解成了3步:
- 将上面的n-1片金片从第一根针(起始针)移动到第二根针(过渡针)
- 将下面的第n片金片从第一根针(起始针)移动到第三根针(目标针)
- 将n-1片金片从第二根针(过渡针)移动到第三根针(目标针)
上面的步骤1和3还需要继续分解,直到完成整个移动为止。
我们来尝试继续分解步骤1(将n-1片金片从第一根针移动到第二根针),可以分解成与上面相似的3步:
- 将上面的n-2片金片从第一根针(起始针)移动到第三根针(过渡针)
- 将下面的第n-1片金片从第一根针(起始针)移动到第二根针(目标针)
- 将n-2片金片从第三根针(过渡针)移动到第二根针(目标针)
同样的,上面的步骤1和3还需要继续分解。
根据上面的分析,拟设计递归函数Move如下:
void Move(int n, int start, int goal,int temp)
其中n代表金片个数,start为起始针,goal为目标针,temp为过渡针
Move(n, start, goal, temp)分解为:
- Move(n - 1, start, temp, goal)
- 将第n片从start移动到goal
- Move(n - 1, temp, goal, start)
代码如下:
/* 汉诺塔问题 */
void Move(int n, int start, int goal, int temp)
{
if(0 == n)
{
return;
}
Move(n -1, start, temp, goal);
printf("Move disk %d tower %d -> %d \n", n, start, goal);
Move(n - 1, temp, goal, start);
return;
}
int main()
{
Move(3, 1, 3, 2);
}
将n设为3时,运行结果如下:
求集合的中位数
这个问题可以建立在求集合第k大元素问题上,当k等于集合大小的一半时,第k大元素就是中位数。
基本思路是:选取集合中的一个元素作为基准e,将集合分为大于等于e的元素集合S1、|e|、小于e的元素集合S2,通过判断S1的大小,将问题转换为在S1或S2中的查找第k大元素的问题。
思路:
- 以集合最左边元素为基准e;
- 从左往右扫描,发现小于e的元素,暂停;
- 从右往左扫描,发现比大于/等于e的元素,暂停;
- 此时,若左右两个暂停点还未相会,则交换两个元素;
- 重复以上步骤,直至左右两个暂停点在中间某处相会,相会的位置即基准e把两个集合S1、S2分开的位置,将基准e交换到这个位置。
- 集合S1的元素个数等于k-1,则e即为第k大元素;集合S1的元素个数大于等于k,则在S1中找第k大元素,否则,在S2中找。
代码如下:
#include <stdio.h>
#include <stdlib.h>
void swap(int* x, int* y)
{
int temp;
temp = *x;
*x = *y;
*y = temp;
}
int find_k_th_largerst(int* array, int k, int left, int right)
{
/* 在array中找第k大的元素 */
int i;
int e = array[left]; /* 以e为基准 */
int l_side = left;
int r = right;
printf("k:%d, left:%d right:%d \n", k, left, right);
/* 将array中比e大的移到左边,小的移到右边 */
while(1)
{
/* 从左往右扫描,找到比e小的数,停止 */
while(l_side <= r && array[l_side] >= e)
{
l_side++;
}
/* 从右往左扫描,找到比e大或相等的数,停止 */
while(l_side < r && array[r] < e)
{
r--;
}
if(l_side < r)
{
printf("swap array[%d](%d) array[%d](%d) \n", l_side, array[l_side], r, array[r]);
swap(&array[l_side], &array[r]);
}
else
{
break;
}
}
printf("left[%d] right[%d] \n", l_side, r);
/* l_side - 1处为大于等于e的集合的最后一个元素,将e换到此处 */
swap(&array[l_side -1], &array[left]);
for(i = left; i <= right; i++)
{
printf("%d ", array[i]);
}
printf("\n");
/* 判断index为(l - 1)的元素是否为第k个元素 */
if((l_side - 1 - left) == (k -1))
{
return e;
}
else if((l_side - 1 - left) > (k -1))
{
/* 在左侧集合里找 */
return find_k_th_largerst(array, k, left, l_side -2);
}
/* 在右侧集合里找(index为l的元素左侧有(l_side - left)个元素) */
return find_k_th_largerst(array, k - (l_side - left), l_side, right);
}
int median(int* array, int n)
{
int ret = find_k_th_largerst(array, (n + 1) / 2, 0, n -1);
printf("median number is %d \n", ret);
return ret;
}
int main()
{
int array[6] = {1, 2, 3, 4, 5, 6};
median(array, sizeof(array) / sizeof(array[0]));
return 0;
}
运行结果: