教程信息
教程:基于Python的股票分析与量化交易入门到实践_哔哩哔哩_bilibili
课程时间:20小时
课程内容:真实策略,实战教学(代码编写),以及面试重点。
预计学习时间:20天。
Lesson 1
课程时长:15分钟
学习时间:2025/04/04 21:00
主要内容:课程简介
知识点:
- 提到了几个知名的量化企业:高盛(Goldman Sachs),中国中信集团,蚂蚁金服。
- 量化交易需要:金融知识,数学知识,编程基础和交易策略。
- 技术栈:python,numpy,panda,JointQuant.
Lesson 2.1, 2.2, 2.4, 2.5, 2.6
课程时长:77分钟
学习时间:2025/04/05 8:00
主要内容:量化交易的概念,历史,流程,分类。其中2.1,2.2是概述,2.4,2.5,2.6是详细内容。
知识点:
- 赔率1:2.25 :投入1块赢得2.25块。
- 量化交易:使用先进的数学模型代替人为主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,减少投资者情绪波动的影响,避免在市场极度狂热和悲观的情况下做出非理性的投资决策。
- 量化交易VS主观交易
- 量化交易发展历史
- 量化交易流程
其中需要指出的是,模拟盘通常要经历半年左右,实盘交易起初可能会损失1-5万。
- 量化交易的分类
- 按照产品类型
- 股票:股份公司为筹集资金而发行给哥哥股东作为持股凭证,并借以取得股息和红利的一种有价证券。
- 期权:一种选择权,是一种能在未来特定时间以特定价格买卖一定数量的某种特定商品的权利。
- 期货:一种标准化合约,期货交易所统一制定的,约定在未来的某个确定的日期和地点,按照约定的条件买卖一定数量和质量的标的资产的标准化合约。
- FOF:基金中的基金,是一种专门投资于其他投资基金的基金。
- 按照盈利模式
- 单边多空:低价买入,单边出现价格下跌时卖出,赚取利差
- 套利:抓住金融产品价格与收益率暂时不一致的机会获得收益。
- 对冲:特意减低另一项投资风险的投资。同时进行两笔行情相关、方向相反、数量相当、盈亏相抵的交易。
- 按照策略信号(交易信号,买入卖出的一系列特征)
- 多因子:找到某些和收益率最相关的指标,并根据该指标,建一个股票组合,期望该组合在未来一段时间跑赢或跑输指数。例如资产负债率,资产回报率,每股净收益,净利润增长率,市盈率,股票板块
- 交易模型
- 均值回归
- 动量效应:物理惯性模型(波浪等)
- 二八轮动
- 海龟
- 网格交易法(高频交易案例)
- 机器学习:从大量数据中找到某种规律,包括但不局限于文本数据,图像数据等,找到可盈利,可量化,可执行的策略信号。类似于多因子,附加权重。某策略应用于A股后,巨亏。
- 按照产品类型
Lesson 2.3
课程时长:20分钟
学习时间:2025/04/05 14:00
主要内容:量化交易的详细步骤
知识点:
- 获取数据。包括四种数据。
- 行情数据:历史数据,成交数据等
- 财务数据:财务报表
- 宏观数据:宏观政策
- 舆情数据
- 获取数据的途径:网站下载,第三方API,客户端(万德,同花顺,大智慧),爬虫。
- 数据清洗:包括四种场景
- 垃圾数据处理
- 空值填充
- 格式转换
- 数据对齐
- 数据清洗常用的工具:NamPy,Pandas
- 策略编写:包括两部分
- 信号捕捉
- 交易:建仓(买)或平仓(卖)
- 策略回测
- 策略优化:注意交易费用,注意风险(设定止盈,止损),优化无止境
- 模拟盘交易:需要注意
- 过去表现并不代表未来结果
- 模拟盘交易要半年以上
- 模拟盘交易盈利100%以上才能实盘交易。
- 实盘交易:
- 要做好第一年赔的准备。
- 不要急于扩大投资
- 心态最重要,要平稳。
Lesson 3.1,3.2,3.3,3.4
课程时长:50分钟
学习时间:2025/04/06 8:00
主要内容:股票的基本概念,分类
知识点:
- 投资风险与收益对比
- 股票的收益分类
- 蓝筹:业绩长期稳定的大公司,各行业的龙头企业,市值在5000亿以上,不管行业是否景气都能挣钱,有稳定的分红。例如,中石化,中石油,茅台,明德时代。
- 白马:业绩稳定,成长性高,市值在3000亿以下,一般集中在消费领域。例如,海尔智家。
- 成长:成长性高于白马股,公司处于高度发展阶段,业绩增长远超整个行业,一般为有发展前景的中小型企业。以高新技术和科技类为主。例如,东方财富。
- 周期:业绩随经济周期波动明显,多为工业基础原材料的大宗商品,机械、造船等制造业,港口、远洋运输等航运业以及汽车(传统)、房地产这样的非生活必需品行业。例如,万科。
- 概念:具有某种特别内涵的股票,通常会被当作一种选股和炒作题材,成为股市热点。例如,元宇宙(宋城演艺)
- 股票的行业分类
- 是由中证指数公司2007年正式发布,现行版本为2021年12月修订,标准相对“官方”,更接近监管行业分类,同国际接轨。
- 分为一(11个),二(35个),三(90+),四级(200+)行业。可从中证指数官网查询,提供导出和下载。
- 申万行业分类:由申万宏源研究所发布,现行版本为2021年8月修订,标准相对“务实”,更接近中国行业国情特征。
- 分为一(31个),二(134个),三级(346个)行业分类。可以从申万指数官网查询和下载。
- 是由中证指数公司2007年正式发布,现行版本为2021年12月修订,标准相对“官方”,更接近监管行业分类,同国际接轨。
- 分类的作用:查看股票行情,选择股票。
- 影响股价的6个因素
- 经济因素:经济繁荣/衰退,股价上涨/下跌。金融危机。
- 政治因素:外交/战争/军工
- 行业因素
- 企业因素
- 市场因素:供求关系,市场交易
- 心里因素:投资人。会引起股价短期剧烈波动。
Lesson 3.5
课程时长:14分钟
学习时间:2025/04/06 22:00
主要内容:股票交易的基础知识
知识点:
- 交易时间:周一至周五(法定节假日除外)9:30~11:30,13:00~15:00
- 竞价成交:
- 价格优先;同价格时,时间优先。
- 9:15~9:25:开盘集合竞价(机构,交易量最大的价格)
- 9:30~11:30 , 13:00~14:57:散户,连续竞价
- 14:57~15:00:收盘集合竞价(机构,交易量最大的价格)
- 竞价成交:
- 交易单位:报价单位是股,交易单位是手,100股=1手。股价最小变动为0.01元。
- 庄家:能够影响到市场行情的大户投资者
- 散户:投入资金较少的个人投资者(小于100w)
- 换手率:某段时间的成交量/发行股票的总量。10%~50%为非常活跃,低于1%非常不活跃。
- 市盈率(PE):每股的市场价格/每股税后利润。PE高,表示股票被高估;低,表示股票被低估。普通PE为14~30,高PE30+,存在泡沫50+,虚高PE100+,低PE1~5(不被看好)
- K线:将每日/周/月的最高价,最低价,开盘价和收盘价用图线表现出来,即蜡烛图。K线要结合成交量来看。
- 核心财务知识(财报)
- ROE:净资产收益率。
- 净利润
- 成长性相关:
- 营业利润增长率
- 净利润增长率
Lesson 3.6
课程时长:14分钟
学习时间:2025/04/06 23:00
主要内容:如何选股
知识点:
- A股有4000支左右。
- 基本面选股:通过分析一家上市公司在发展过程中所面临的外部因素(经济因素,央行财政政策(是否放水),贷款利率变化)以及自身因素(经营状况,行业地位,财务状况),来预测其未来的发展前景,并以此来判断该上市公司的股票是否值得买入。
- 股票估值:基本面选股的核心方法。帮助投资者发行价值被低估的股票,从而低买高卖获利。
- 每股收益:越高越好
- 市盈率:同行业市盈率越低越好
- 毛利率:越高越好。>50%,非常不错的公司。
- 净资产收益率:ROE长期保持在20%以上,为白马股
- 资产负债率:适中为好,过高容易爆雷,过低发展保守。最好在10%~40%。
- 净利润增速:近三年平均增速在20%以上为优质企业,大于50%为成长股。
Lesson 3.7
课程时长:20分钟
学习时间:2025/04/06 23:20
主要内容:股票买入和卖出的时机(择时)及常用的6种技术分析
知识点:
- K线形态:显示股价的强弱,多空双方的力量对比
- 成交量:买卖数量的变化,多空双方的力量变化
- 均线:收盘价之和除以该周期所得到的一根平均线。常用参数5/10/20/30/60日均线
- 布林带:由三条轨道线组成。从上至下为价格的压力线,平均线和支撑线。
- MACD:Moving Average Convergence/Divergence,异同移动平均线,表示股价变化的速度。
- KDJ:随机指标。通过价格波动的真实波幅来反映价格走势的强弱和超买超卖现象,在价格尚未上升或下降之前,发出买卖信号的一种技术分析指标,适用于短期(天,小时,分)行情走势分析。
Lesson 3.8
课程时长:14分钟
学习时间:2025/04/06 23:40
主要内容:量化交易平台
知识点:
- 国内常见的量化交易平台:聚宽(JoinQuant),掘金量化(MyQuant),BigQuant,米宽(RiceQuant),TradeBlazer
- 聚宽量化交易平台:提供回测功能,高速实盘交易接口,API稳定,由易入难的策略库。2005年至今的数据,Tick级数据(秒级,付费),多交易品种,实盘交易,Python API,社区活跃。
- 聚宽量化交易平台的在线使用:账号注册,试用申请,新建策略,策略回测,模拟交易。免费用户与收费用户的区别,在于提供的工具,数据颗粒度不同。