图的深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再 从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中 最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。
图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点 vi1,vi2, …, vi t,并均标记已访问过,然后再按照vi1,vi2, …, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。
二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
为了方便程序验证,首先构造一个如图所示的二叉树。
源码:
/*************************** bintree.h文件 *****************************/
#ifndef _BINTREE_H
#define _BINTREE_H
template <class T>
class CBintree
{
public:
CBintree();
bool Depth_RF();//先根深度遍历
bool Depth_RM();//中根深度遍历
bool WidthFS(); //层次遍历
protected:
private:
struct TreeNode
{
T va;
TreeNode *plchild;
TreeNode *prchild;
};
TreeNode *m_pBintree;
};
#endif
template <class T>
CBintree<T>::CBintree()
{
m_pBintree = new TreeNode;
TreeNode *pNode2 = new TreeNode;
TreeNode *pNode3 = new TreeNode;
TreeNode *pNode4 = new TreeNode;
TreeNode *pNode5 = new TreeNode;
TreeNode *pNode6 = new TreeNode;
TreeNode *pNode7 = new TreeNode;
m_pBintree->va = (T)1;
m_pBintree->plchild = pNode2;
m_pBintree->prchild = pNode3;
pNode2->va = (T)2;
pNode2->plchild = pNode4;
pNode2->prchild = pNode5;
pNode3->va = (T)3;
pNode3->plchild = NULL;
pNode3->prchild = pNode6;
pNode4->va = (T)4;
pNode4->plchild = NULL;
pNode4->prchild = NULL;
pNode5->va = (T)5;
pNode5->plchild = pNode7;
pNode5->prchild = NULL;
pNode6->va = (T)6;
pNode6->plchild = NULL;
pNode6->prchild = NULL;
pNode7->va = (T)7;
pNode7->plchild = NULL;
pNode7->prchild = NULL;
}
template <class T>
bool CBintree<T>::Depth_RF() //先根深度遍历
{
cout << "先根遍历序列:\n";
stack <TreeNode> s;
s.push(*m_pBintree);
while (!s.empty())
{
TreeNode node_s = s.top();
cout << node_s.va << "\n";
s.pop();
if (node_s.prchild != NULL)
{
s.push(*node_s.prchild);
}
if (node_s.plchild != NULL)
{
s.push(*node_s.plchild);
}
}
return true;
}
template <class T>
bool CBintree<T>::Depth_RM() //中根深度遍历
{
cout << "中根遍历序列:\n";
stack <TreeNode> s;
TreeNode *pNode = m_pBintree;
while (pNode != NULL || !s.empty())
{
while (pNode != NULL)
{
s.push(*pNode);
pNode = pNode->plchild;
}
if (!s.empty())
{
TreeNode node_s = s.top();
cout << node_s.va << "\n";
s.pop();
pNode = node_s.prchild;
}
}
return true;
}
template <class T>
bool CBintree<T>::WidthFS() //层次遍历
{
cout << "层次遍历序列:\n";
queue <TreeNode> q;
q.push(*m_pBintree);
while (!q.empty())
{
TreeNode *pNode = &q.front();
cout << pNode->va << "\n";
if (pNode->plchild != NULL)
{
q.push(*pNode->plchild);
}
if (pNode->prchild != NULL)
{
q.push(*pNode->prchild);
}
q.pop();
}
return true;
}
/************************ main.cpp 文件 ****************************/
#include <iostream>
#include <stack>
#include <queue>
using namespace std;
#include "bintree.h"
int main()
{
CBintree <int> bt;
bt.Depth_RF();
bt.Depth_RM();
bt.WidthFS();
return 0;
}
/***************** 教科书标准算法及优化算法(转)*******************/
1.先序遍历非递归算法
void PreOrderUnrec(Bitree *t)
{
Stack s;
StackInit(s);
Bitree *p=t;
while (p!=NULL || !StackEmpty(s))
{
while (p!=NULL) //遍历左子树
{
visite(p->data);
push(s,p);
p=p->lchild;
}
if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历
{
p=pop(s);
p=p->rchild;
}//endif
}//endwhile
}
2.中序遍历非递归算法
void InOrderUnrec(Bitree *t)
{
Stack s;
StackInit(s);
Bitree *p=t;
while (p!=NULL || !StackEmpty(s))
{
while (p!=NULL) //遍历左子树
{
push(s,p);
p=p->lchild;
}
if (!StackEmpty(s))
{
p=pop(s);
visite(p->data); //访问根结点
p=p->rchild; //通过下一次循环实现右子树遍历
}//endif
}//endwhile
}
3.后序遍历非递归算法
typedef enum{L,R} tagtype;
typedef struct
{
Bitree ptr;
tagtype tag;
}stacknode;
typedef struct
{
stacknode Elem[maxsize];
int top;
}SqStack;
void PostOrderUnrec(Bitree t)
{
SqStack s;
stacknode x;
StackInit(s);
p=t;
do
{
while (p!=null) //遍历左子树
{
x.ptr = p;
x.tag = L; //标记为左子树
push(s,x);
p=p->lchild;
}
while (!StackEmpty(s) && s.Elem[s.top].tag==R)
{
x = pop(s);
p = x.ptr;
visite(p->data); //tag为R,表示右子树访问完毕,故访问根结点
}
if (!StackEmpty(s))
{
s.Elem[s.top].tag =R; //遍历右子树
p=s.Elem[s.top].ptr->rchild;
}
}while (!StackEmpty(s));
}//PostOrderUnrec
4.前序最简洁非递归算法
void PreOrderUnrec(Bitree *t)
{
Bitree *p;
Stack s;
s.push(t);
while (!s.IsEmpty())
{
s.pop(p);
visit(p->data);
if (p->rchild != NULL) s.push(p->rchild);
if (p->lchild != NULL) s.push(p->lchild);
}
}
5.后序算法之二
void BT_PostOrderNoRec(pTreeT root)
{
stack<treeT *> s;
pTreeT pre=NULL;
while ((NULL != root) || !s.empty())
{
if (NULL != root)
{
s.push(root);
root = root->left;
}
else
{
root = s.top();
if (root->right!=NULL && pre!=root->right){
root=root->right;
}
else{
root=pre=s.top();
visit(root);
s.pop();
root=NULL;
}
}
}
}
图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点 vi1,vi2, …, vi t,并均标记已访问过,然后再按照vi1,vi2, …, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。
二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
为了方便程序验证,首先构造一个如图所示的二叉树。
源码:
/*************************** bintree.h文件 *****************************/
#ifndef _BINTREE_H
#define _BINTREE_H
template <class T>
class CBintree
{
public:
CBintree();
bool Depth_RF();//先根深度遍历
bool Depth_RM();//中根深度遍历
bool WidthFS(); //层次遍历
protected:
private:
struct TreeNode
{
T va;
TreeNode *plchild;
TreeNode *prchild;
};
TreeNode *m_pBintree;
};
#endif
template <class T>
CBintree<T>::CBintree()
{
m_pBintree = new TreeNode;
TreeNode *pNode2 = new TreeNode;
TreeNode *pNode3 = new TreeNode;
TreeNode *pNode4 = new TreeNode;
TreeNode *pNode5 = new TreeNode;
TreeNode *pNode6 = new TreeNode;
TreeNode *pNode7 = new TreeNode;
m_pBintree->va = (T)1;
m_pBintree->plchild = pNode2;
m_pBintree->prchild = pNode3;
pNode2->va = (T)2;
pNode2->plchild = pNode4;
pNode2->prchild = pNode5;
pNode3->va = (T)3;
pNode3->plchild = NULL;
pNode3->prchild = pNode6;
pNode4->va = (T)4;
pNode4->plchild = NULL;
pNode4->prchild = NULL;
pNode5->va = (T)5;
pNode5->plchild = pNode7;
pNode5->prchild = NULL;
pNode6->va = (T)6;
pNode6->plchild = NULL;
pNode6->prchild = NULL;
pNode7->va = (T)7;
pNode7->plchild = NULL;
pNode7->prchild = NULL;
}
template <class T>
bool CBintree<T>::Depth_RF() //先根深度遍历
{
cout << "先根遍历序列:\n";
stack <TreeNode> s;
s.push(*m_pBintree);
while (!s.empty())
{
TreeNode node_s = s.top();
cout << node_s.va << "\n";
s.pop();
if (node_s.prchild != NULL)
{
s.push(*node_s.prchild);
}
if (node_s.plchild != NULL)
{
s.push(*node_s.plchild);
}
}
return true;
}
template <class T>
bool CBintree<T>::Depth_RM() //中根深度遍历
{
cout << "中根遍历序列:\n";
stack <TreeNode> s;
TreeNode *pNode = m_pBintree;
while (pNode != NULL || !s.empty())
{
while (pNode != NULL)
{
s.push(*pNode);
pNode = pNode->plchild;
}
if (!s.empty())
{
TreeNode node_s = s.top();
cout << node_s.va << "\n";
s.pop();
pNode = node_s.prchild;
}
}
return true;
}
template <class T>
bool CBintree<T>::WidthFS() //层次遍历
{
cout << "层次遍历序列:\n";
queue <TreeNode> q;
q.push(*m_pBintree);
while (!q.empty())
{
TreeNode *pNode = &q.front();
cout << pNode->va << "\n";
if (pNode->plchild != NULL)
{
q.push(*pNode->plchild);
}
if (pNode->prchild != NULL)
{
q.push(*pNode->prchild);
}
q.pop();
}
return true;
}
/************************ main.cpp 文件 ****************************/
#include <iostream>
#include <stack>
#include <queue>
using namespace std;
#include "bintree.h"
int main()
{
CBintree <int> bt;
bt.Depth_RF();
bt.Depth_RM();
bt.WidthFS();
return 0;
}
/***************** 教科书标准算法及优化算法(转)*******************/
1.先序遍历非递归算法
void PreOrderUnrec(Bitree *t)
{
Stack s;
StackInit(s);
Bitree *p=t;
while (p!=NULL || !StackEmpty(s))
{
while (p!=NULL) //遍历左子树
{
visite(p->data);
push(s,p);
p=p->lchild;
}
if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历
{
p=pop(s);
p=p->rchild;
}//endif
}//endwhile
}
2.中序遍历非递归算法
void InOrderUnrec(Bitree *t)
{
Stack s;
StackInit(s);
Bitree *p=t;
while (p!=NULL || !StackEmpty(s))
{
while (p!=NULL) //遍历左子树
{
push(s,p);
p=p->lchild;
}
if (!StackEmpty(s))
{
p=pop(s);
visite(p->data); //访问根结点
p=p->rchild; //通过下一次循环实现右子树遍历
}//endif
}//endwhile
}
3.后序遍历非递归算法
typedef enum{L,R} tagtype;
typedef struct
{
Bitree ptr;
tagtype tag;
}stacknode;
typedef struct
{
stacknode Elem[maxsize];
int top;
}SqStack;
void PostOrderUnrec(Bitree t)
{
SqStack s;
stacknode x;
StackInit(s);
p=t;
do
{
while (p!=null) //遍历左子树
{
x.ptr = p;
x.tag = L; //标记为左子树
push(s,x);
p=p->lchild;
}
while (!StackEmpty(s) && s.Elem[s.top].tag==R)
{
x = pop(s);
p = x.ptr;
visite(p->data); //tag为R,表示右子树访问完毕,故访问根结点
}
if (!StackEmpty(s))
{
s.Elem[s.top].tag =R; //遍历右子树
p=s.Elem[s.top].ptr->rchild;
}
}while (!StackEmpty(s));
}//PostOrderUnrec
4.前序最简洁非递归算法
void PreOrderUnrec(Bitree *t)
{
Bitree *p;
Stack s;
s.push(t);
while (!s.IsEmpty())
{
s.pop(p);
visit(p->data);
if (p->rchild != NULL) s.push(p->rchild);
if (p->lchild != NULL) s.push(p->lchild);
}
}
5.后序算法之二
void BT_PostOrderNoRec(pTreeT root)
{
stack<treeT *> s;
pTreeT pre=NULL;
while ((NULL != root) || !s.empty())
{
if (NULL != root)
{
s.push(root);
root = root->left;
}
else
{
root = s.top();
if (root->right!=NULL && pre!=root->right){
root=root->right;
}
else{
root=pre=s.top();
visit(root);
s.pop();
root=NULL;
}
}
}
}