自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(102)
  • 收藏
  • 关注

原创 ChatGLM-6B使用与微调

ChatGLM-6B使用与微调

2024-07-13 21:46:40 901

原创 U-2 Net原理+代码实战教程

介绍了U2-Net网络的原理以及代码实战教程

2024-07-12 13:55:04 690 1

原创 论文解读——《MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Co》

介绍了论文《Minedreamer: Learning to follow instructions via chain-of-imagination for simulated-world control》

2024-06-12 21:47:45 987

原创 论文解读——ICML2024《SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manip》

介绍ICML2024论文《SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation》

2024-06-12 21:39:59 806

原创 论文解读——《I2EDL: Interactive Instruction Error Detection and Localization》

介绍了论文《I2EDL: Interactive Instruction Error Detection and Localization》

2024-06-12 21:27:18 751

原创 论文解读——CVPR2024《Learning by Correction: Efficient Tuning Task for Zero-Shot Generative Vision-Langua》

介绍了CVPR2024论文《Learning by Correction: Efficient Tuning Task for Zero-Shot Generative Vision-Language Reasoning》

2024-06-12 21:20:39 1030 2

原创 利用Python的NLTK库来查询指定单词的同义词

利用Python的NLTK库来查询指定单词的同义词

2024-06-11 16:24:28 479

原创 论文解读——AAMAS2024《Pragmatic Instruction Following and Goal Assistance via Cooperative Language-Guided》

解读AAMAS2024论文《Pragmatic Instruction Following and Goal Assistance via Cooperative Language-Guided Inverse Planning》

2024-06-11 11:34:43 670

原创 论文解读——AAMAS2024《OPEx: A Large Language Model-Powered Framework for Embodied Instruction Following 》

解读AAMAS2024论文《OPEx: A Large Language Model-Powered Framework for Embodied Instruction Following 》

2024-06-11 11:24:31 1036

原创 论文解读——EMNLP2023《Uprise: Universal prompt retrieval for improving zero-shot evaluation》

解读EMNLP2023论文《Uprise: Universal prompt retrieval for improving zero-shot evaluation》

2024-06-10 22:29:26 917

原创 论文解读——EMNLP2023《Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Lang》

解读EMNLP2023论文《Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Languages》

2024-06-10 22:19:19 1239

原创 Recognize Anything: A Strong Image Tagging Model(RAM模型使用方法)

详细介绍了RAM模型的使用方法

2024-06-09 13:38:06 1210

原创 AI2THOR 2.1.0使用教程

详细介绍了AI2THOR 2.1.0使用教程,包括安装要求和示例代码

2024-06-09 13:10:22 964

原创 CLIP计算图片与文本相似度(多幅图片与一个文本)

本文介绍了使用CLIP计算多幅图片和一个文本之间相似度的方法,并提供了完整的代码

2024-06-07 10:37:48 1319

原创 场景图生成网络——RelTR(TPAMI2023)

介绍了TPAMI2023提出的ReITR场景图生成网络

2024-06-07 09:57:12 797 1

原创 论文解读——NeurIPS2024《Language models meet world models: Embodied experiences enhance language models》

NeurIPS2024论文《Language models meet world models: Embodied experiences enhance language models》

2024-06-06 15:23:43 841

原创 BERT应用——文本间关联性分析

本文结合了自然语言处理(NLP)和深度学习技术,旨在分析一段指定的任务文本中的动词,并进一步探讨这个动词与一系列属性之间的关联性。具体技术路径包括文本的词性标注、语义编码和模型推断。

2024-06-06 14:46:26 1400

原创 BERT应用——文本相似度计算

本文展示了如何利用BERT模型计算两个文本字符串之间的余弦相似度。

2024-06-06 14:03:20 1666

原创 论文解读——CoRL2023《Goal Representations for Instruction Following: A Semi-Supervised Language Interface》

CoRL2023论文《Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control》

2024-06-06 13:40:13 587

原创 论文解读——EMNLP2023《LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instru》

介绍了论文:EMNLP2023《LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instruction Following》

2024-06-05 16:09:04 821

原创 论文解读——AAAI2024《GOALNET: Interleaving Neural Goal Predicate Inference with Classical Planning for Ge》

AAAI2024论文《GOALNET: Interleaving Neural Goal Predicate Inference with Classical Planning for Generalization in Robot Instruction Following》

2024-06-05 14:18:27 648

原创 论文解读——ICLR2024《Online Continual Learning For Interactive Instruction Following Agents》

Online Continual Learning For Interactive Instruction Following Agents

2024-06-04 10:12:44 628

原创 论文解读——CVPR2022《One step at a time: Long-horizon vision-and-language navigation with milestones》

介绍了CVPR2022的具身智能方向的论文《One Step at a Time: Long-Horizon Vision-and-Language Navigation with Milestones》

2024-06-03 20:37:27 588

原创 IEEE Robotics and Automation Letters(RAL)期刊投稿时间记录

2024.1.15 submittion2024.1.16 Under review2024.3.2 Decision pending2024.3.6 Revise and resumption2024.4.1Resubmit,Under review2024.5.16 Decision pending2024.5.22 Accept

2024-05-30 13:05:50 355

原创 具身智能论文(四)

具身智能最新论文,来源NeurIPS2023

2024-05-14 19:21:23 1290

原创 Graph Embedding——Node2Vec

具体来说,Node2Vec首先从图中的每个节点出发执行多次随机游走,生成大量的节点序列,这些序列在概念上类似于自然语言处理中的句子,其中的节点则相当于单词。随后,利用Skip-Gram模型,Node2Vec将这些“句子”作为输入,通过最大化节点序列中的共现概率来学习节点的向量表示。Node Embedding,节点嵌入,旨在将图中的节点映射到一个低维度的连续向量空间中,以便在这一空间内,通过向量的几何关系反映出节点在原图中的拓扑结构和节点间的关系等属性。

2024-05-14 08:38:00 336

原创 强化学习——马尔可夫奖励过程的理解

介绍了强化学习中的马尔可夫奖励过程的理解

2024-05-13 21:16:04 1059

原创 强化学习——马尔可夫过程的理解

介绍了强化学习中的马尔可夫过程的理解

2024-05-13 21:15:29 642

原创 具身智能论文(三)

具身智能最新论文,来源ICCV2023

2024-05-13 09:20:59 743

原创 具身智能论文(二)

具身智能最新论文,来源ICRA2023

2024-05-13 09:20:14 1203

原创 具身智能论文(一)

2024年最新具身智能论文,来自RAL和AAAI

2024-05-12 11:57:20 961 1

原创 YOLOv8+CLIP实现图文特征匹配

本文通过结合YOLOv8s的高效物体检测能力与CLIP的先进图像-文本匹配技术,展示了深度学习在处理和分析复杂多模态数据中的潜力。

2024-05-12 11:25:24 1542

原创 算法详解——穷举法

穷举法是一种基本的算法思想,其核心在于遍历解空间中的所有可能解,逐一检验以确定哪些解符合问题的要求。这种方法不依赖于特定的策略或技巧,而是直接对所有可能的情况进行全面和系统的探索,以确保找到问题的确切答案。穷举法可用于解决多种类型的问题,特别是那些解空间有限且易于定义所有可能解的问题。以下是一些典型的问题类型,它们常常使用穷举法来寻找解决方案:组合问题:例如,旅行商问题(TSP),在这类问题中需要找出所有可能的组合或排列,然后选择最优解。尽管穷举法并不总是实际可行的,但它在解空间较小的情况下仍然有效。

2024-05-11 19:07:30 658

原创 算法详解——回溯法

回溯法是一种解决的方法,特别适用于解决组合问题、搜索优化问题等。它通过逐步构建候选解决方案并且在这个解决方案不再可能满足约束或条件时进行剪枝和回溯。

2024-05-11 18:55:11 1294

原创 LLM—Transformer作用及信息流

Transformer架构的精髓在于其创新性地采用了编码器与解码器的堆叠设计,这一设计巧妙地融合了多头自注意力机制(Multi-Head Attention)和位置前馈网络(Position-wise Feed Forward Network)两大核心组件,通过这些组件的高度协同作用,实现了对序列数据的高效处理。在此框架下,编码器和解码器的每一层都包含了一系列相同的子层,这些子层经过仔细设计,确保了信息在模型中的流动既高效又全面。

2024-03-20 12:32:02 368

原创 算法详解——Dijkstra算法

Dijkstra算法的目的是寻找单起点最短路径,其策略是贪心加非负加权队列。

2024-03-18 16:58:49 1494

原创 算法详解——选择排序和冒泡排序

选择排序算法的执行过程是这样的:首先,算法遍历整个列表以确定,接着,这个最小的元素被置换到,确保它被放置在其应有的有序位置上。接下来,从列表的第二个元素开始,算法再次执行扫描,这次是为了找出剩余的 n-1 个元素中的最小值,并将其与第二个位置的元素进行交换,这样第二小的元素就被安置在了正确的位置上。依此类推,当进行到第 i 次扫描时(其中 i 的取值范围是从 0 到 n-2),算法会在剩下的 n-i 个元素中,并将其与。经过 n-1 次这样的操作后,列表便完成了排序,每个元素都被安置在了其最终的有序位置上。

2024-03-18 15:58:53 309

原创 算法详解——贪心算法

举个例子,考虑以下场景:你是一位旅行者,要从一个城市出发,访问其他城市,最终回到起点。虽然这样做可能不会得到全局最优解(最短总距离),但通常能够找到一个近似最优解,且具有较高的效率。虽然贪心算法并不能保证一定得到全局最优解,但在许多情况下,它展现出了高效且简单的特点,使其在某些问题的解决中具有明显的优势。尽管在某些情况下贪心选择可能会导致局部最优解无法达到全局最优解,但在很多实际问题中,贪心算法能够以较少的计算量快速找到可行解,因此被广泛应用。贪心算法,又称贪婪算法,是一种解决问题的策略。

2024-03-13 16:15:59 1496 2

原创 算法详解——图的深度优先遍历和广度优先遍历

图数据中的深度优先遍历算法和广度优先遍历算法

2024-03-13 15:38:05 3739

原创 ChatGPT使用api_key本地部署

通过以下网址获取自己的api_key,然后替换程序中的your_api_key。

2024-02-28 21:38:20 549

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除