文章目录
前言
记录Kafka入门
背景
于kafka来说,一个单独的broker意味着kafka集群中只有一个节点。要想增加kafka集群中的节点数量,只需要多启动 几个broker实例即可。在一台机器上同时启动三个broker实例。
kafka集群实战
建立好其他2个broker的配置文件
cp config/server.properties config/server‐1.properties
cp config/server.properties config/server‐2.properties
配置文件的需要修改的内容分别如下:
- config/server-1.properties
#broker.id属性在kafka集群中必须要是唯一
broker.id=1
#kafka部署的机器ip和提供服务的端口号
listeners=PLAINTEXT://192.168.10.31:9093
log.dir=/usr/local/data/kafka‐logs‐1
#kafka连接zookeeper的地址,要把多个kafka实例组成集群,对应连接的zookeeper必须相同
zookeeper.connect=192.168.10.31:2181
- config/server-2.properties:
broker.id=2
listeners=PLAINTEXT://192.168.10.31:9094
log.dir=/usr/local/data/kafka‐logs‐2
zookeeper.connect=192.168.10.31:2181
已经有一个zookeeper实例和一个broker实例在运行了,现在
在这里插入代码片
只需要在启动2个broker实例即可
bin/kafka‐server‐start.sh ‐daemon config/server‐1.properties
bin/kafka‐server‐start.sh ‐daemon config/server‐2.properties
查看zookeeper确认集群节点是否都注册成功
现在创建一个新的topic,副本数设置为3,分区数设置为2
bin/kafka‐topics.sh ‐‐create ‐‐zookeeper 192.168.10.31:2181 ‐‐replication‐factor 3 ‐‐partitions 2 ‐‐topic my‐replica ted‐topic
查看下topic的情况
bin/kafka‐topics.sh ‐‐describe ‐‐zookeeper 192.168.10.31:2181 ‐‐topic my‐replicated‐topic
以下是输出内容的解释,第一行是所有分区的概要信息,之后的每一行表示每一个partition的信息
- leader节点负责给定partition的所有读写请求,同一个主题不同分区leader副本一般不一样(为了容灾)
- replicas 表示某个partition在哪几个broker上存在备份。不管这个几点是不是”leader“,甚至这个节点挂了,也会列出。
- isr 是replicas的一个子集,它只列出当前还存活着的,并且已同步备份了该partition的节点。
现在向新建的 my-replicated-topic 中发送一些message,kafka集群可以加上所有kafka节点
bin/kafka‐console‐producer.sh ‐‐broker‐list 192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094 ‐‐topic my‐repl icated‐topic
>my test msg 1
>my test msg 2
开始消费
bin/kafka‐console‐consumer.sh ‐‐bootstrap‐server 192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094 ‐‐from‐beg inning ‐‐topic my‐replicated‐topic
my test msg 1
my test msg 2
测试容错性,因为broker1目前是my-replicated-topic的分区0的leader,所以将其kill
ps ‐ef | grep server.properties
kill 14776
再执行命令
bin/kafka‐topics.sh ‐‐describe ‐‐zookeeper 192.168.10.31:9092 ‐‐topic my‐replicated‐topic
可以看到,分区0的leader节点已经变成了broker 0。要注意的是,在Isr中,已经没有了1号节点。leader的选举也 是从ISR(in-sync replica)中进行的,但是依然可以 消费新消息
bin/kafka‐console‐consumer.sh ‐‐bootstrap‐server 192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094 ‐‐from‐beg inning ‐‐topic my‐replicated‐topic
my test msg 1
my test msg 2
查看主题分区对应的leader信息
kafka将很多集群关键信息记录在zookeeper里,保证自己的无状态,从而在水平扩容时非常方便
集群消费
log的partitions分布在kafka集群中不同的broker上,每个broker可以请求备份其他broker上partition上的数据。kafka 集群支持配置一个partition备份的数量。针对每个partition,都有一个broker起到“leader”的作用,0个或多个其他的broker作为“follwers”的作用。 leader处理所有的针对这个partition的读写请求,而followers被动复制leader的结果,不提供读写(主要是为了保证多 副本数据与消费的一致性)。如果这个leader失效了,其中的一个follower将会自动的变成新的leader。
Producers
生产者将消息发送到topic中去,同时负责选择将message发送到topic的哪一个partition中。通过roundrobin做简单的 负载均衡。也可以根据消息中的某一个关键字来进行区分。通常第二种方式使用的更多。
Consumers
传统的消息传递模式有2种:队列( queue) 和(publish-subscribe)
- queue模式:多个consumer从服务器中读取数据,消息只会到达一个consumer。
- publish-subscribe模式:消息会被广播给所有的consumer。
Kafka基于这2种模式提供了一种consumer的抽象概念:consumer group - queue模式:所有的consumer都位于同一个consumer group 下。
- publish-subscribe模式:所有的consumer都有着自己唯一的consumer group。
上图说明:由2个broker组成的kafka集群,某个主题总共有4个partition(P0-P3),分别位于不同的broker上。这个集群 由2个Consumer Group消费, A有2个consumer instances ,B有4个。通常一个topic会有几个consumer group,每个consumer group都是一个逻辑上的订阅者( logical subscriber )。每个consumer group由多个consumer instance组成,从而达到可扩展和容灾的功能。
消费顺序
一个partition同一个时刻在一个consumer group中只能有一个consumer instance在消费,从而保证消费顺序。 consumer group中的consumer instance的数量不能比一个Topic中的partition的数量多,否则,多出来的 consumer消费不到消息。 Kafka只在partition的范围内保证消息消费的局部顺序性,不能在同一个topic中的多个partition中保证总的消费顺序 性。如果有在总体上保证消费顺序的需求,那么我们可以通过将topic的partition数量设置为1,将consumer group中的 consumer instance数量也设置为1,但是这样会影响性能,所以kafka的顺序消费很少用。
Java客户端访问Kafka
引入maven依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.4.1</version>
</dependency>
消息发送端代码
package com.mjdai.kafka.kafkaDemo;
import com.alibaba.fastjson.JSON;
import com.tuling.kafka.kafkaDemo.Order;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
public class MsgProducer {
private final static String TOPIC_NAME = "my-replicated-topic";
public static void main(String[] args) throws InterruptedException, ExecutionException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094");
/*
发出消息持久化机制参数
(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一
条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略
会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
*/
props.put(ProducerConfig.ACKS_CONFIG, "1");
/*
发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在
接收者那边做好消息接收的幂等性处理
*/
props.put(ProducerConfig.RETRIES_CONFIG, 3);
//重试间隔设置
props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
/*
kafka本地线程会从缓冲区取数据,批量发送到broker,
设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
*/
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
/*
默认值是0,意思就是消息必须立即被发送,但这样会影响性能
一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去
如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长
*/
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
//把发送的key从字符串序列化为字节数组
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
//把发送消息value从字符串序列化为字节数组
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
Producer<String, String> producer = new KafkaProducer<String, String>(props);
int msgNum = 5;
final CountDownLatch countDownLatch = new CountDownLatch(msgNum);
for (int i = 1; i <= msgNum; i++) {
Order order = new Order(i, 100 + i, 1, 1000.00);
//指定发送分区
/*ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
, 0, order.getOrderId().toString(), JSON.toJSONString(order));*/
//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
, order.getOrderId().toString(), JSON.toJSONString(order));
//等待消息发送成功的同步阻塞方法
RecordMetadata metadata = producer.send(producerRecord).get();
System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());
//异步回调方式发送消息
/*producer.send(producerRecord, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {
System.err.println("发送消息失败:" + exception.getStackTrace());
}
if (metadata != null) {
System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());
}
countDownLatch.countDown();
}
});*/
//送积分 TODO
}
countDownLatch.await(5, TimeUnit.SECONDS);
producer.close();
}
}
消息接收端代码
package com.mjdai.kafka.kafkaDemo;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;
public class MsgConsumer {
private final static String TOPIC_NAME = "my-replicated-topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
// 是否自动提交offset,默认就是true
/*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");*/
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
/*
当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费
latest(默认) :只消费自己启动之后发送到主题的消息
earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
*/
//props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/*
consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将
rebalance方案下发给consumer,这个时间可以稍微短一点
*/
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
/*
服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,
对应的Partition也会被重新分配给其他consumer,默认是10秒
*/
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
//一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50);
/*
如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,
会将其踢出消费组,将分区分配给别的consumer消费
*/
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList(TOPIC_NAME));
// 消费指定分区
//consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
//消息回溯消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*/
//指定offset消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*/
//从指定时间点开始消费
/*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
//从1小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
TopicPartition key = entry.getKey();
OffsetAndTimestamp value = entry.getValue();
if (key == null || value == null) continue;
Long offset = value.offset();
System.out.println("partition-" + key.partition() + "|offset-" + offset);
System.out.println();
//根据消费里的timestamp确定offset
if (value != null) {
consumer.assign(Arrays.asList(key));
consumer.seek(key, offset);
}
}*/
while (true) {
/*
* poll() API 是拉取消息的长轮询
*/
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
record.offset(), record.key(), record.value());
}
if (records.count() > 0) {
// 手动同步提交offset,当前线程会阻塞直到offset提交成功
// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
//consumer.commitSync();
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
/*consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for " + offsets);
System.err.println("Commit failed exception: " + exception.getStackTrace());
}
}
});*/
}
}
}
}
Spring Boot整合Kafka
引入spring boot kafka依赖
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
application.yml配置如下
server:
port: 8080
spring:
kafka:
bootstrap-servers: 192.168.10.31:9092,192.168.10.31:9093,192.168.10.31:9094
producer: # 生产者
retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
batch-size: 16384
buffer-memory: 33554432
acks: 1
# 指定消息key和消息体的编解码方式
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: default-group
enable-auto-commit: false
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
listener:
# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
# RECORD
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交
# BATCH
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交
# TIME
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交
# COUNT
# TIME | COUNT 有一个条件满足时提交
# COUNT_TIME
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交
# MANUAL
# 手动调用Acknowledgment.acknowledge()后立即提交
# MANUAL_IMMEDIATE
ack-mode: MANUAL_IMMEDIATE
发送者代码
package com.kafka;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class KafkaController {
private final static String TOPIC_NAME = "my-replicated-topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@RequestMapping("/send")
public void send() {
kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a msg");
}
}
消费者代码
package com.kafka;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;
@Component
public class MyConsumer {
/**
* @KafkaListener(groupId = "testGroup", topicPartitions = {
* @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
* @TopicPartition(topic = "topic2", partitions = "0",
* partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
* },concurrency = "6")
* //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
* @param record
*/
@KafkaListener(topics = "my-replicated-topic",groupId = "mjdaiGroup")
public void listenmjdaiGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
//手动提交offset
//ack.acknowledge();
}
//配置多个消费组
/*@KafkaListener(topics = "my-replicated-topic",groupId = "mjdai01Group")
public void listenmjdai01Group(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
ack.acknowledge();
}*/
}