问题描述:
爬楼梯,每次以1或2步爬楼梯,共n阶,求共有多少种爬楼梯方式
分析:
设台阶数为s,s=1时有一种方法
s=2时有两种方法 1,1 | 2
s=3时有三种方法 1,1,1| 1,2 | 2,1
推广到一般情况,对于n(n>=3)个台阶,可以先爬到第n-1个台阶,然后再爬一个台阶,或者先爬到n-2个台阶,然后爬2个台阶,因此有f(n)=f(n-1)+f(n-2)
#include <stdio.h>
#include <stdlib.h>
int f(int n);
int main()
{
int n,t;
scanf("%d",&n);
t=f(n);
printf("%d",t);
return 0;
}
int f(int n)
{
long s;
if(n==1)
s=1;
else if(n==2)
s=2;
else
s=f(n-1)+f(n-2);
return s;
}