动态规划--爬楼梯问题

问题描述:

                爬楼梯,每次以1或2步爬楼梯,共n阶,求共有多少种爬楼梯方

 分析:

        设台阶数为s,s=1时有一种方法

                                s=2时有两种方法 1,1 | 2

                                s=3时有三种方法 1,1,1|  1,2 | 2,1

推广到一般情况,对于n(n>=3)个台阶,可以先爬到第n-1个台阶,然后再爬一个台阶,或者先爬到n-2个台阶,然后爬2个台阶,因此有f(n)=f(n-1)+f(n-2)


#include <stdio.h>
#include <stdlib.h>
int f(int n);
int main()
{
    int n,t;
    scanf("%d",&n);
    t=f(n);
    printf("%d",t);
    return 0;
}
int f(int n)
{
    long s;
    if(n==1)
        s=1;
    else if(n==2)
        s=2;
    else
        s=f(n-1)+f(n-2);
    return s;
}


 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值