转网易博客的
枫叶的文章
一、平衡二叉树的构造
在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树
1.调整方法
(1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点
(2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。
2.调整方式
(1)LL型
LL型:插入位置为左子树的左结点,进行向右旋转
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。(2)RR型RR型:插入位置为右子树的右孩子,进行向左旋转由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。(3)LR型LR型:插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,第二次再调整最小不平衡子树。由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。(4)RL型RL型:插入位置为右子树的左孩子,进行两次调整,先右旋转再左旋转;处理情况与LR类似。
平衡二叉树
平衡二叉树的要求是每个节点的左右子树的高度之差不能超过1,这就有3种可能,左子树比右子树 的高度 大1 小1,相等,但是新插入的点是未知的,所以很有可能会打乱平衡,因此,要对不平衡的子树进行调整,
调整方式就直接转网易博客的
枫叶的文章来说明
一、平衡二叉树的构造
在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树
1.调整方法
(1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点
(2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。
2.调整方式
(1)LL型
LL型:插入位置为左子树的左结点,进行向右旋转
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。(2)RR型RR型:插入位置为右子树的右孩子,进行向左旋转由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。(3)LR型LR型:插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,第二次再调整最小不平衡子树。由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。(4)RL型RL型:插入位置为右子树的左孩子,进行两次调整,先右旋转再左旋转;处理情况与LR类似。