李笑来劝你“断网“,万维钢却要你“抢跑“——当代人该如何平衡这两种智慧?

永远在线-“更新的”是“更重要的”?

李笑来在新书《专注的真相》中提到「永远在线」会触发一种人类固有的焦虑:害怕错失机会(Fear of missing opportunity,简称“FOMO”),永远在线就不怕错过任何机会,多巴胺能系统就这样被轻易的劫持了。

为什么「永远在线」会触发 FOMO,根源一个思维漏洞:误以为“更新的“ 是“更重要的”。书中说这个判断偶尔正确,但绝大多数情况是错误的,而且越年轻的受其影响越大。其实仔细想想,我们看到的绝大多数新闻,实际上跟自己没啥关系,除了浪费宝贝的时间和精力。问题是,没有谁能在年轻时就对这个事实如此笃行。

阿尔法收益

万维钢在专栏中分享了一个概念叫「阿尔法收益」,它本是金融理论,简单说,金融市场的行为往往就像羊群一样,具有整体性:行情好的时候众多股票一起涨,行情不好的时候一起跌。那么你的投资组合的相当一部分收益,其实是市场整体的波动给你的 —— 夏普把这部分收益叫「Beta收益(贝塔收益)」。而「阿尔法收益(Alpha收益)」,则是你超出市场平均水平的那部分收益。

阿尔法收益-图片来源精英日课专栏
阿尔法收益-图片来源精英日课专栏

现在这个概念出圈了变成了流行词汇,泛指任何因为“领先一步、快人一拍”而带来的收益 —— 比如你掌握了一个内幕消息,或者发现了一个别人还没注意到的新玩法。

万维钢提醒我们要有这个思维:面对任何新事物,乃至于任何事物,我们都可以问一句 —— 这里有没有阿尔法?你能不能快速做点什么,获得一个哪怕是小小的、但必须是领先于同行的优势?

Alpha心态和Beta心态的区别:

  • Alpha心态是主动探索,可能往往是出于好奇心和好胜心;

  • Beta心态则是被动应对,是出于掉队的恐惧。

比如,一个新AI玩法出来了,

Beta 心态是跟风:别人都在用,我可别落后,我必须凑个热闹;

Alpha 心态则是我能不能立刻把它整合进自己的工作流里,提高一波效率?我能不能迅速用这个技术搭建一个新的工具?我能不能想一个服务场景,是别人还没做出来的?

比如前阵子 ChatGPT4o 的吉卜力风格画非常流行,最开始玩的那波人享受到了「阿尔法收益」,后来玩的只有 Beta 收益了,现在好像除了我偶尔做个封面图外,朋友圈已经看不到别人分享了。

如何捕捉阿尔法?

既然阿尔法收益这么好,那怎么捕捉阿尔法收益呢?

最好比别人早知道一些信息,也就是信息差,别人读书你读论文和报告,最前沿的东西往往在小圈子先出现。生财有术社群有个“风向标”栏目,其实就是发布搞钱信息差的。

有了信息就要抢先行动。判断出来这件事能带来阿尔法收益,就尽早行动,快速试错,先把东西做出来,拿到市场验证。

「不要嘲笑那个整天追求新东西的人,我们往往低估了“新”这个因素的力量。“新”本身就是巨大的价值」

获得阿尔法一个最简单的方法就是市场上刚推出某种新产品的时候,你第一时间买一个回来,动手试一试,做个小评测,发个分享视频。第二个、第三个评测者需要投入和你一样的精力和金钱,可他们只能得到 Beta。

一般只有第一波的人吃到螃蟹,后面的就吃不到了。这让我想到一些 AI 博主,他们每天关注 AI 新进展,比如歸藏、小互、宝玉,他们会追最新的大模型、AI产品进展。他们就是在追求阿尔法收益,有精神上的,也有金钱上的。因为可以接商单帮推新产品,而且我发现推 AI 产品没有广告嫌疑,广告即内容,想想之前技术公众号接的都是什么产品广告?各种培训机构的课程,比较伤读者。

李笑来和万维钢的观点矛盾吗?

李笑来的观点和万维钢的观点好像是矛盾的,一个说要避免被信息洪流裹挟,另一个则鼓励追求新事物以获取优势,到底谁说得正确?还是说各有各的适用场景?

他俩观点看似矛盾,实则是对"新事物"的两种不同视角的观察和应对策略。这两者的差异本质上是对"新事物"的认知维度不同,适用场景也不同。

底层逻辑:两种视角的互补性

  1. 李笑来:警惕"新"的认知陷阱

  • 批判的是被动式的新事物追逐(Beta心态)

  • 针对的是信息过载时代的注意力保护

  • 揭露的是多巴胺机制对判断力的绑架

  1. 万维钢:挖掘"新"的战略价值

  • 提倡的是主动式的新事物筛选(Alpha心态)

  • 关注的是创新扩散曲线的早期红利

  • 强调的是先发优势的套利空间

二者如同盾与矛的关系:李笑来教我们防御无效信息的侵袭,万维钢教我们主动出击捕捉机会

实践中的动态平衡框架

采用"漏斗式筛选模型":

  1. 第一层过滤(李笑来思维)

  • 对新事物进行"相关性测试":是否与个人目标/能力圈相关?

  • 做"时间价值评估":投入产出比是否合理?

  • 例如:看到新 AI 工具时先问"它能优化我工作流的哪个环节?"

  1. 第二层捕捉(万维钢思维)

  • 对通过筛选的新事物实施"快速验证循环":

  1. 最小可行性测试

  2. 差异化价值挖掘(寻找未被发现的用法)

  3. 成果封装(输出测评/教程/案例)

  • 例如:用新出的AI绘画工具创作特定领域的模板

具体场景的应用指南

场景

李笑来思维适用

万维钢思维适用

社交媒体信息流

屏蔽90%的跟风讨论

捕捉剩余10%中的创新用法

新工具出现

拒绝"为用而用"的使用

研究其场景和原理并应用到工作流

知识付费产品

警惕重复造轮子的课程

寻找可改造的认知框架(如将Alpha思维迁移到其他领域)

进阶策略:构建个人Alpha-Beta平衡系统

  1. 建立信息分级制度

  • S级信息(直接产生Alpha):行业闭门会议纪要、学术预印本论文

  • A级信息(潜在Alpha):垂直领域深度评测、工具更新日志

  • B级信息(Beta噪音):朋友圈刷屏热点、平台热搜榜单

  1. 设计双轨注意力机制

  • 日常状态:保持80%注意力在李笑来模式的深度工作中

  • 每周设置2小时"Alpha狩猎时间",专门用于万维钢式的新事物探索

当代职场人最理想的状态应该是:像狙击手般专注核心目标,同时拥有特工般敏锐的新机会嗅觉

真正的高手能在"不被噪音干扰"和"不错失信号"之间走出第三条路——通过建立智能化的信息筛选机制,把对新事物的应激反应,升级为可编程的机会捕捉算法。

数据集介绍:多品类农业目标检测数据集 数据集名称:多品类农业目标检测数据集 图片数量: - 训练集:11,911张图片 - 验证集:422张图片 - 测试集:124张图片 - 总计:12,457张高质量图片 分类类别: 涵盖51个农业相关类别,包括水果(苹果、香蕉、芒果、葡萄)、蔬菜(卷心菜、黄瓜、茄子、菠菜)、坚果(杏仁、腰果、榛子、核桃)、调味作物(辣椒、生姜、大蒜)及肉类(牛肉、鸡肉、猪肉)等,完整覆盖农业生产链关键品类。 标注格式: YOLO格式,包含标准化边界框坐标及类别标签,可直接用于目标检测模型训练。 1. 农业自动化分拣系统 支持开发AI驱动的分拣机器人,精准识别水果成熟度、坚果品类及蔬菜质量,提升加工效率。 1. 智能农场监测 用于无人机或摄像头系统,实时检测作物生长状态、病虫害区域及成熟作物分布。 1. 食品加工质量控制 集成至生产线视觉系统,自动检测原料种类(如肉类分类、坚果筛选),确保加工合规性。 1. 农业科研与教育 为农业院校提供多品类检测基准数据,支持算法研究及教学案例开发。 全链路覆盖 从田间作物(甜玉米、土豆)到加工原料(肉类、坚果),覆盖农业生产-加工全流程检测需求。 标注专业性 YOLO标注经多轮校验,边界框紧密贴合目标,支持复杂场景下的密集目标检测(如混合坚果分拣)。 场景多样性 包含自然光照、阴影遮挡、多角度拍摄等真实农业环境数据,强化模型鲁棒性。 高扩展性 兼容YOLOv5/v7/v8等主流框架,支持快速迁移至分类、计数等衍生任务。
高空视角多目标检测数据集 数据集名称:高空视角多目标检测数据集 验证集规模:4,106张航拍图片 分类类别: - 体育设施:棒球场/篮球场/足球场/球场/田径场 - 交通设施:桥梁/大型车辆/小型车辆/船舶/直升机 - 工业设施:集装箱起重机/储油罐/港口 - 地理特征:圆形交通环岛/游泳池 - 航空器:飞机 标注特性: - YOLO格式多边形标注,支持旋转目标检测 - 包含密集小目标标注(如船舶、车辆) - 多角度航拍视角覆盖 无人机智能巡检系统: 支持电力巡检、交通监控等场景的自动目标识别,实现基础设施的智能巡查与异常检测 卫星影像解析系统: 适用于城市发展规划、港口物流管理等领域的卫星影像自动分析 地理信息系统(GIS)更新: 自动化识别地表建筑变化,辅助地图数据实时更新 应急救援支持: 灾害现场的直升机坪识别、道路通行性评估等应急场景应用 智慧城市建设: 支持城市三维建模、交通流量分析等智慧城市应用场景 高价值目标覆盖: 包含16类关键基础设施目标,特别涵盖港口起重机、储油罐等工业场景稀缺标注数据 复杂场景标注: - 支持旋转框检测,适应航拍目标的任意朝向 - 密集小目标标注经专业质检,保证重叠目标的识别精度 多尺度特征学习: 包含从大型机场到小型车辆的跨尺度目标,提升模型尺度适应能力 实战验证数据: 专为模型验证优化的数据集,包含光照变化、目标遮挡等真实场景挑战 算法兼容性强: YOLO格式标注可直接适配主流检测框架(YOLO系列、MMDetection等),支持旋转目标检测算法开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值