/*
Main idea:
Use SPFA(i) to compute the shortest paths from single source i;
i is in [1..P], P is the number of pastures; and then compute the total
distance of paths each cow to source i;
SPFA means Shortest Path Faster Algorithm, detail can refer to nocow;
You can also use Dijkstra to get the shortest paths, but its implement
is more difficult, because the operation of priority queue;
*/
/*
Executing...
Test 1: TEST OK [0.000 secs, 8512 KB]
Test 2: TEST OK [0.000 secs, 8512 KB]
Test 3: TEST OK [0.011 secs, 8512 KB]
Test 4: TEST OK [0.011 secs, 8512 KB]
Test 5: TEST OK [0.011 secs, 8512 KB]
Test 6: TEST OK [0.032 secs, 8512 KB]
Test 7: TEST OK [0.043 secs, 8512 KB]
Test 8: TEST OK [0.086 secs, 8512 KB]
Test 9: TEST OK [0.173 secs, 8512 KB]
Test 10: TEST OK [0.140 secs, 8512 KB]
All tests OK.
*/
/*
ID: haolink1
PROG: butter
LANG: C++
*/
//#include <iostream>
#include <fstream>
#include <queue>
#include <cstring>
using namespace std;
const unsigned int INF = ~0;
int N = 0, P = 0, C = 0;
unsigned int dist[800];
short cow[800];
int edge_num[800];
int edge_end[800][800];
unsigned int weight[800][800];
bool in_queue[800];
ifstream fin("butter.in");
ofstream cout("butter.out");
void SPFA(int source){
queue<int> que;
//Note the usage of memset;
memset(in_queue,0,sizeof(in_queue));
memset(dist,INF,sizeof(dist));
que.push(source);
in_queue[source] = true;
dist[source] = 0;
while(!que.empty()){
int cur = que.front();
que.pop();
in_queue[cur] = false;
for(int i = 0; i < edge_num[cur]; i++){
int cur_end = edge_end[cur][i];
if(dist[cur]+weight[cur][cur_end] < dist[cur_end]){
dist[cur_end] = dist[cur]+weight[cur][cur_end];
if(!in_queue[cur_end]){
que.push(cur_end);
in_queue[cur_end] = true;
}
}
}
}
}
unsigned int TotalDist(){
unsigned int total = 0;
for(int i = 0; i < N; i++){
total += dist[cow[i]];
}
return total;
}
int main(){
fin >> N >> P >> C;
for(int i = 0; i < N; i++){
int pasture_num = 0;
fin >> pasture_num;
cow[i] = --pasture_num;
}
for(int i = 0; i < C; i++){
//Note, because the number of paths C [1,1450] is far smaller than the 800*800,
//The graph is sparse. So we use some structure like "Adjacency List" to find the
//vertices adjacent to each node in a cheap way;
int u = 0,v = 0,w = 0;
fin >> u >> v;
u--;v--;
edge_end[u][edge_num[u]] = v;
edge_end[v][edge_num[v]] = u;
edge_num[u]++;
edge_num[v]++;
fin >> w;
weight[u][v] = weight[v][u] = w;
}
unsigned int min_total_dist = INF;
for(int i = 0; i < P; i++){
SPFA(i);
unsigned int cur_total_dist = TotalDist();
if(cur_total_dist < min_total_dist)
min_total_dist = cur_total_dist;
}
cout << min_total_dist << endl;
return 0;
}
USACO 3.2 Sweet Butter (butter)
最新推荐文章于 2022-01-14 10:29:12 发布