题意:求区间内的数字是每一位的倍数的数的数量
思路:加的状态是当前取余2520的余数,因为2520是1到9的最小公倍数,然后还有一个状态就是1到9都有哪些数出现了,可以用状态压缩来完成,然后最后就判断余数和出现的所有1到9的数是不是都取余为0即可
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=5010;
const int mod=2520;
int dig[30],f[20];
ll dp[20][2530][260];
bool judge(int sum,int num){
for(int i=2;i<=9;i++){
if(sum>>(i-2)&1){
if(num%i!=0) return 0;
}
}
return 1;
}
ll dfs(int pos,int lim,int num,int sum){//num为余数,sum为状态压缩
if(pos<0) return judge(sum,num);
if(!lim&&dp[pos][num][sum]!=-1) return dp[pos][num][sum];
int las=lim?dig[pos]:9;
ll ret=0;
for(int i=0;i<=las;i++){
int tmp=sum;
if(i>=2){
if(sum>>(i-2)&1) tmp=sum;
else tmp+=(1<<(i-2));
}
ret+=dfs(pos-1,lim&&(i==las),(num*10+i)%mod,tmp);
}
if(!lim) dp[pos][num][sum]=ret;
return ret;
}
ll slove(ll n){
if(n==0) return 1;
int len=0;
while(n){
dig[len++]=n%10;
n/=10;
}
return dfs(len-1,1,0,0);
}
int main(){
memset(dp,-1,sizeof(dp));
int T,cas=1;
ll n,m;
// cout<<slove(9)<<"=="<<endl;
while(scanf("%d",&T)!=-1){
while(T--){
scanf("%I64d%I64d",&n,&m);
printf("%I64d\n",slove(m)-slove(n-1));
}
}
return 0;
}