CodeForces 55D 数位DP

点击打开链接

题意:求区间内的数字是每一位的倍数的数的数量

思路:加的状态是当前取余2520的余数,因为2520是1到9的最小公倍数,然后还有一个状态就是1到9都有哪些数出现了,可以用状态压缩来完成,然后最后就判断余数和出现的所有1到9的数是不是都取余为0即可

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=5010;
const int mod=2520;
int dig[30],f[20];
ll dp[20][2530][260];
bool judge(int sum,int num){
    for(int i=2;i<=9;i++){
        if(sum>>(i-2)&1){
            if(num%i!=0) return 0;
        }
    }
    return 1;
}
ll dfs(int pos,int lim,int num,int sum){//num为余数,sum为状态压缩
    if(pos<0) return judge(sum,num);
    if(!lim&&dp[pos][num][sum]!=-1) return dp[pos][num][sum];
    int las=lim?dig[pos]:9;
    ll ret=0;
    for(int i=0;i<=las;i++){
        int tmp=sum;
        if(i>=2){
            if(sum>>(i-2)&1) tmp=sum;
            else tmp+=(1<<(i-2));
        }
        ret+=dfs(pos-1,lim&&(i==las),(num*10+i)%mod,tmp);
    }
    if(!lim) dp[pos][num][sum]=ret;
    return ret;
}
ll slove(ll n){
    if(n==0) return 1;
    int len=0;
    while(n){
        dig[len++]=n%10;
        n/=10;
    }
    return dfs(len-1,1,0,0);
}
int main(){
    memset(dp,-1,sizeof(dp));
    int T,cas=1;
    ll n,m;
//    cout<<slove(9)<<"=="<<endl;
    while(scanf("%d",&T)!=-1){
        while(T--){
            scanf("%I64d%I64d",&n,&m);
            printf("%I64d\n",slove(m)-slove(n-1));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值