Machine Learning
文章平均质量分 81
Dandeliony
这个作者很懒,什么都没留下…
展开
-
机器学习基础 I
主要是回顾《统计学习方法》第一章的内容,从比较宏观的角度讲了学习一个机器学习方法所要把握的各个方面,有了这些基础知识后,才渐渐理解当初看Andrew Ng的视频里那一个个公式出现的意义,以及解决一个实际的机器学习问题需要做哪些事情。流程统计学习三要素交叉验证与模型选择正则化的参数选择1. 监督学习的一般流程输入一个带标签的训练集;确定要学习的模型,即常说的假设空间(假设函数);确定模原创 2015-05-17 12:07:09 · 552 阅读 · 0 评论 -
机器学习基础 II
1. 模型评估与模型选择在实际应用中,针对具体的监督学习问题,为了评估所训练出的模型是否有较好地泛化能力,可以把数据集切割成训练集和测试集两部分(注意使训练集和测试集中均含有各种类型的数据)。用训练集在各种条件下(如:不同的参数个数)训练模型,学习出其参数后,再在测试集上评价各个模型的测试误差。选择测试误差最小的模型。引用Andrew Ng的机器学习课程中的一个例子进行说明。 假设要在10个不同原创 2015-05-25 16:36:22 · 706 阅读 · 1 评论